1. Trang chủ
  2. » Giáo án - Bài giảng

Đáp án Toán TNPT 2011(BT) http://violet.vn/thcs nguyenvantroi hochiminh

3 105 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 253,2 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 Môn thi: TOÁN – Giáo dục thường xuyên ĐỀ THI CHÍNH THỨC HƯỚNG DẪN CHẤM THI (Văn gồm 03 trang) I Hướng dẫn chung 1) Nếu thí sinh làm không theo cách nêu đáp án cho đủ số điểm phần hướng dẫn quy định 2) Việc chi tiết hoá (nếu có) thang điểm hướng dẫn chấm phải đảm bảo không làm sai lệch hướng dẫn chấm phải thống thực toàn Hội đồng chấm thi 3) Sau cộng điểm toàn bài, làm tròn đến 0,5 điểm (lẻ 0,25 làm tròn thành 0,5; lẻ 0,75 làm tròn thành 1,0 điểm) II Đáp án thang điểm CÂU Câu (3,0 điểm) ĐÁP ÁN ĐIỂM (2,0 điểm) 0,25 a) Tập xác định: D = \ b) Sự biến thiên: 0,25 ⎡ x = −1 • Chiều biến thiên: y ' = x − 6; y ' = ⇔ ⎢ ⎣ x = Trên khoảng (−∞ ; −1) (1; +∞), y ' > nên hàm số đồng biến Trên khoảng (−1;1), y ' < nên hàm số nghịch biến • Cực trị: Hàm số đạt cực đại x = −1; yCÐ = y (−1) = 0,25 0,25 Hàm số đạt cực tiểu x = 1; yCT = y(1) = −7 • Giới hạn: lim y = −∞; lim y = +∞ x →−∞ 0,25 x →+∞ • Bảng biến thiên: x −∞ y' y −1 + +∞ − 0 + 0,25 +∞ −∞ −7 y c) Đồ thị (C): O -1 x 0,50 -3 -7 (1,0 điểm) Ta có tọa độ giao điểm đồ thị (C) với trục tung (0; −3) 0,50 y '(0) = −6 Vậy phương trình tiếp tuyến cần tìm y − (−3) = −6( x − 0) ⇔ y = −6 x − Câu (2,0 điểm) 0,50 (1,0 điểm) Trên đoạn [ −2; 5] , ta có f '( x) = 10 > ( x + 3) 0,50 Hàm số đồng biến đoạn [ −2; 5] Vậy max f ( x) = f (5) = ; f ( x ) = f ( −2) = −7 − 2;5 [ ] [ −2;5] 0,50 (1,0 điểm) 0,25 Đặt u = x − dv = cos xdx, ta du = 2dx v = sin x Do I = [ (2 x − 3) sin x ] π π π 0 − ∫ sin xdx = [ (2 x − 3) sin x + cos x ] 0,50 Vậy I = (0 − 2) − (0 + 2) = −4 Câu (2,0 điểm) 0,25 (1,0 điểm) G Đường thẳng d có vectơ phương u = (1; − 3; 2) G ( P) vuông góc với d nên u = (1; − 3; 2) vectơ pháp tuyến ( P) Mặt khác ( P) qua điểm A nên ( P) có phương trình 1( x − 0) − 3( y − 1) + 2( z − 4) = ⇔ x − y + z − = 0,50 0,50 (1,0 điểm) Gọi H hình chiếu vuông góc A d, ta có JJJG H ∈ d ⇒ H (1 + t ; − 3t ; − + 2t ) ⇒ AH = (1 + t ;1 − 3t ; − + 2t ) JJJG G JJJG G AH ⊥ u ⇔ AH u = 0,50 Do 1(1 + t ) − 3(1 − 3t ) + 2(−6 + 2t ) = ⇔ t = 0,50 Vậy H (2; −1;0) Câu (2,0 điểm) (1,0 điểm) Điều kiện: x > ⎡t = −1 Đặt t = log5 x, phương trình cho trở thành t − t − = ⇔ ⎢ ⎣t = • • 0,50 Với t = −1, ta có log5 x = −1 ⇔ x = Với t = 2, ta có log5 x = ⇔ x = 25 0,50 Vậy nghiệm phương trình x = , x = 25 (1,0 điểm) Ta có z = (2 + 4i ) + (2i − 6i ) 0,50 = (2 + 4i ) + (6 + 2i ) = + 6i Vậy z = − 6i z = 82 + 62 = 10 Câu (1,0 điểm) 0,50 S Ta có SA ⊥ ( ABC ) ⇒ SA ⊥ AB Tam giác SAB vuông A 0,50 ⇒ SA = SB − AB = a A C B Tam giác ABC cạnh a nên S ΔABC = Vậy VS ABC a2 a3 = 0,25 0,25 - Hết -

Ngày đăng: 21/12/2015, 11:03

TỪ KHÓA LIÊN QUAN

w