0

Giải bài tập bằng cách lập hệ phương trình toán lớp 9

15 2,337 1
  • Giải bài tập bằng cách lập hệ phương trình toán lớp 9

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 29/03/2015, 09:08

Sáng kiến kinh nghiệm. Dạy học Giải toán bằng cách lập phơng trình và hệ phơng trình. a. đặt vấn đề Nh chúng ta đã biết, ngay từ những ngày đầu mới cắp sách đến trờng. Học sinh lớp 1 đã đợc tập giải phơng trình. Đó là những phơng trình rất đơn giản dới dạng điền số thích hợp vào ô trống. Đối với các học sinh ở lớp cao hơn thì tính chất phức tạp đề bài toán dới dạng phơng trình cũng dần đợc nâng lên. Đó là những phơng trình viết sẵn, học sinh chỉ việc giải phơng trình, tìm ra ẩn số. Tuy nhiên đối với học sinh lớp 8, lớp 9 các đề toán về phơng trình có thêm dạng bài toán có lời, học sinh căn cứ vào đề bài toán để thành lập phơng trình. Kết quả của bài toán không chỉ phụ thuộc vào kỹ năng giải phơng trình và còn phụ thuộc nhiều vào việc thành lập phơng trình. Đề bài toán là một đoạn văn mô tả mối quan hệ giữa các đại lợng đã biết và các đại lợng cần tìm. Yêu cầu học sinh phải có kiến thức phân tích, khái quát, tổng hợp liên kết các đại lợng với nhau, chuyển đổi từ ngôn ngữ thông thờng sang ngôn ngữ toán học để thành lập phơng trình để giải. Nội dung của bài toán hầu hết gắn với thực tiễn đời sống con ngời, nên trong quá trình giải loại toán này học sinh thờng không lu tâm đến yếu tố thực tiễn dẫn đến đáp số vô lý. Việc giải các bài toán bằng cách lập phơng trình đối với học sinh ở bậc THCS là một việc làm mới mẻ và khá khó khăn, dễ gây tình trạng học sinh chán nản hoặc sợ hãi khi gặp dạng toán này. Chính vì vậy nhiệm vụ của ngời thầy giáo không chỉ đơn thuần truyền thụ cho học sinh những kiến thức cơ bản theo trình tự sách giáo khoa, mà vấn đề đặt ra 1 là ngời thầy phải dạy cho học sinh phơng pháp giải loại toán này phải dựa trên những qui tắc chung là: Yêu cầu về giải một bài toán, qui tắc giải bài toán bằng cách lập phơng trình , phân loại các loại toán dựa vào quá trình biến thiên của các đại lợng làm sáng tỏ mối quan hệ giữa các đại lợng dẫn đến lập đợc phơng trình dễ dàng. Đây là một bớc đặc biệt quan trọng và khó khăn đối với học sinh. Qua tham khảo, học hỏi bằng những kinh nghiệm rút ra sau những năm giảng dạy ở lớp 8, lớp 9 trực tiếp thử nghiệm, tôi viết sáng kiến kinh nghiệm: Dạy giải bài toán bằng cách lập phơng trình và hệ phơng trình . b. nội dung I. Phơng pháp nghiên cứu và yêu cầu về giải một bài toán. 1. Phơng pháp nghiên cứu. Giải bài toán bằng cách lập phơng trình (hệ phơng trình ) là một trọng tâm của Đại số 8, 9. Nó đòi hỏi khả năng phân tích và trừu tợng hoá các sự kiện cho trong bài toán thành các kiến thức và phơng trình (hệ phơng trình ). Nó cũng đòi hỏi kĩ năng giải phơng trình ( hệ phơng trình ) và lựa chọn nghiệm thích hợp. Vì vậy phơng pháp hớng dẫn học sinh giải loại toán này là dựa vào qui tắc chung: Tóm tắt các bớc giải bài toán bằng cách lập phơng trình. * Bớc 1: Lập phơng trình (hệ phơng trình ). - Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số. - Biểu diễn các đại lợng cha biết theo ẩn và các đại lợng đã biết. - Lập phơng trình (hệ phơng trình ) biểu thị mối quan hệ giữa các đại lợng. * Bớc 2: Giải phơng trình (hệ phơng trình ). * Bớc 3: Trả lời: Kiểm tra xem trong các nghiệm, nghiệm nào thoả mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận. Mặc dù đã có qui tắc trên xong ngời giáo viên trong quá trình hớng dẫn giải loại toán này cho học sinh vận dụng theo sát yêu cầu về giải một bài toán nói chung. 2 2. Yêu cầu về giả một bài toán. 2.1. Yêu cầu 1: Lời giải không phạm sai lầm và không có sai sót mặc dù nhỏ. Muốn cho học sinh không mắc sai phạm này giáo viên phải làm cho học sinh hiểu đề toán và trong quá trình giải không có sai sót về kiến thức, phơng pháp suy luận, kỹ năng tính toán, ký hiệu, điều kiện của ẩn, phải rèn cho học sinh thói quen đặt điều kiện cho ẩn và xem xét, đối chiếu kết quả với điều kiện của ẩn có hợp lý cha. 2.1. Yêu cầu 2: Lời giải bài toán lập luận phải có căn cứ chính xác. Đó là trong quá trình thực hiện từng bớc có lôgic chặt chẽ với nhau, có cơ sở lý luận chặt chẽ, đặc biệt phải chú ý đến việc thoả mãn điều kiện nêu trong giả thiết. Xác định ẩn khéo léo, mọi quan hệ giữa ẩn và dữ kiện đã cho làm nổi bật đ- ợc ý phải tìm. Nhờ mối tơng quan giữa các đại lợng trong bài toán thiết lập đợc phơng trình (hệ phơng trình ) từ đó tìm đợc giá trị của ẩn số. Muốn vậy giáo viên cần làm cho học sinh hiểu đợc đâu là ẩn? đâu là dữ kiện? đâu là điều kiện? Có thể thoả mãn đợc điều kiện hay không? điều kiện có đủ để xác định đợc ẩn không? Từ đó mà xác định hớng đi, xây dựng đợc cách giải. Ví dụ 1: Hai cạnh của một khu đất hình chữ nhật hơn kém nhau 4m. Tính chu vi của khu đất đó nếu biết diện tích của nó bằng 1200m 2 . H ớng dẫn: ở đây bài toán hỏi chu vi của hình chữ nhật. Học sinh thờng có xu thế bài toán hỏi gì thì gọi đó là ẩn, nếu gọi chu vi của hình chữ nhật là ẩn thì bài toán đi vào bế tắc khó có lời giải. Giáo viên cần hớng dẫn học sinh phát triển sâu trong khả năng suy diễn để từ đó đặt vấn đề: Muốn tính chu vi hình chữ nhật ta cần biết gì? => (cạnh hình chữ nhật). Từ đó: Gọi chiều rộng khu đất hình chữ nhật là x (đơn vị mét, điều kiện x > 0) Từ đó có phơng trình x ( x + 4 ) = 120 <=> x 2 + 4x 1200 = 0 3 Giải phơng trình ta có: x 1 = 30; x 2 = -34 Giáo viên giúp học sinh từ điều kiện để loại nghiệm x 2 = -34 Chỉ lấy x 1 = 30 => chiều dài là 30 + 4 = 34 Chu vi là: 2(30 + 34) = 128(m) L u ý : ở bài toán này nghiệm x 2 = -34 có giá trị tuyệt đối bằng chiều dài hình chữ nhật, học sinh dễ mắc sai lầm coi đó là kết quả (nghiệm) của bài toán. 2.3. Yêu cầu 3: Lời giải phải đầy đủ, mang tính toàn diện. Hớng dẫn học sinh không đợc bỏ sót khả năng chi tiết nào, không thừa nh- ng cũng không thiếu, rèn cho học sinh cách kiểm tra lại lời giải đã đầy đủ cha? Kết quả của bài toán đã là đại diện phù hợp với mọi cái chung. Nếu thay đổi điều kiện bài toán rơi vào trờng hợp đặt biệt thì kết quả vẫn luôn đúng. Ví dụ 2: Một tam giác có chiều cao bằng 4 3 cạnh đáy. Nếu chiều cao tăng thêm 3dm và cạnh đáy giảm đi 2dm thì diện tích của nó tăng thêm 12dm 2 . Tính chiều cao và cạnh đáy? H ớng dẫn: Lu ý cho học sinh dù có thay đổi chiều cao, cạnh đáy của tam giác thì diện tích (S) của nó luôn đợc tính theo công thức x 2 1 =S (cạnh đáy x chiều cao) Từ đó gọi chiều dài cạnh đáy(lúc đầu) là x(dm) x > 0. Thì chiều cao (lúc đầu) sẽ là 4 3 x => Diện tích lúc đầu là xx 4 3 2 1 . Diện tích sau là ( ) + 3 4 3 2 2 1 xx . Ta có phơng trình 4 ( ) 12 4 3 2 1 3 4 3 2 2 1 = + x xxx Giải phơng trình ta đợc x= 20 thoả mãn điều kiện => Chiều cao lúc đầu là dm1520 4 3 =. 2.4. Yêu cầu 4: Lời giải bài toán phải đơn giản Bài toán phải đảm bảo đợc 3 yêu cầu trên không sai sót, có lập luận, mang tính toàn điện và phù hợp kiến thức, trình độ của học sinh, đại đa số học sinh hiểu và làm đợc. Ví dụ 3: (Bài toán cổ) Vừa gà vừa chó Bó lại cho tròn 36 con 100 chân chẵn Hỏi có mấy gà, mấy chó? Với bài toàn này nếu giải nh sau: Gọi số gà là x (x > 0; x N ), thì số chó sẽ là 36 x Số chân gà là 2x; số chân chó là 4(36 - x) Ta có phơng trình 2x + 4(36 x) = 100 Giải ra ta có: x = 22=> Số gà là 22 con Số chó là 36 22 = 14con Thì bài toán sẽ ngắn gọn, dễ hiểu. Nhng có học sinh giải theo cách dùng 2 ẩn (x, y), hoặc gọi là chân gà là x thì đã vô tình đa thành bài toán khó hiểu không hợp vào trình độ học sinh. 2.5. Yêu cầu 5: Lời giải phải trình bày khoa học. Đó là lu ý đến mối quan hệ giữa các bơc giải trong bài toán phải lôgic, chặt chẽ với nhau. Các bớc sau đợc suy ra từ các bớc trớc nó đã đợc kiểm nghiệm, chứng minh là đúng hoặc những điều đã biết từ trớc. 5 Ví dụ 4: Chiều cao của một tam giác vuông = 9,6m và chia cạnh huyền thành hai đoạn hơn kém nhau 5,6m. Tính độ dài cạnh huyền của tam giác? Ta có hình vẽ Theo hình vẽ bài toán yêu cầu tìm độ dài BC khi biết AH. Trớc khi giải cần kiểm tra kiến thức học sinh để củng cố công thức AH 2 = BH . CH Để từ đó: Gọi độ dài BH là x (x>0)(m) => CH có độ dài là x + 5,6 Ta có phơng trình x ( x + 5,6) = 9,6 2 Giải phơng trình ta có x = 7,2 thoả mãn điều kiện => độ dài cạnh huyền là (7,2 + 5,6) + 7,2 = 20(m) 2.6. Yêu cầu 6: Lời giải bài toán phải rõ ràng, đầy đủ, có thể nên thử lại. Lu ý đến việc giải các bớc lập luận, tiến hành không chồng chéo, phủ định lẫn nhau. Kết quả phải đúng nên rèn cho học sinh thói quen thử lại kết quả và tìm hết các nghiệm của bài toán, tránh bỏ sót nhất là đối với phơng trình bậc 2, hệ ph- ơng trình. II. Các giai đoạn giải bài toán bằng cách lập phơng trình, hệ phơng trình. 1. Phân giai đoạn: Để đảm bảo 6 yêu cầu về giải một bài toán và 3 bớc trong qui tắc giải nh đã nêu ở phần I thì giải bài toán loại này có thể chia thành 7 giai đoạn cụ thể nh sau: 1.1. Giai đoạn 1: 6 A B C H (nhỏ) (lớn) Đọc kĩ đề bài, phân tích viết giả thiết, kết luận của bài toán. Giúp học sinh hiểu bài toán cho những dữ kiện gì? Cần tìm gì? Có thể mô tả bằng hình vẽ đợc không? 1.2. Giai đoạn 2: Nêu rõ các vấn đề liên quan để lập phơng trình. Tức là chọn ẩn nh thế nào cho phù hợp, điều kiện của ẩn thế nào cho thoả mãn. 1.3. Giai đoạn 3: Lập phơng trình. Dựa vào các quan hệ giữa ẩn số và các đại lợng đã biết, dựa vào các công thức, tính chất để xây dựng phơng trình, biến đổi tơng đơng phơng trình đó về ph- ơng trình về dạng đã biết. 1.4. Giai đoạn 4: Giải phơng trình: Vận dụng các kỹ năng giải phơng trình đã biết để tìm nghiệm phơng trình. 1.5. Giai đoạn 5: Nghiên cứu nghiệm của phơng trình để xác định lời giải của bài toán. Tức là xét nghiệm của phơng trình với điều kiện đặt ra của bài toán với thực tiễn xem có phù hợp không? 1.6. Giai đoạn 6: Trả lời bài toán, kết luận nghiệm của bài toán có mấy nghiệm sau khi đã đợc thử lại. 1.7. Giai đoạn 7: Phân tích biện luận cách giải này thờng mở rộng với học sinh khá, giỏi sau khi đã giải xong có thể hỏi ý kiến học sinh biến đổi bài toán đã cho thành bài toán khác nh: - Giữ nguyên ẩn số thay đổi giữ kiện, giả thiết. - Giữ nguyên các dữ kiện thay đổi ẩn và giả thiết. - Giải bài toán bằng cách khác, tìm cách giải hay nhất. 2. Ví dụ minh hoạ cho các giai đoạn giải bài toán bằng cách lập phơng trình. Ví dụ 5: 7 Nhà Bác An thu hoạch đợc 480kg cà chua và khoai tây. Khối lợng khoai tây gấp 3 lần khối lợng cà chua. Tính khối lợng mỗi loại? H ớng dẫn giải: + Giai đoạn 1: Giả thiết: Khoai + cà chua = 480kg Khoai = 3lần cà chua Kết luận: Tìm kg khoai? Kg cà chua? + Giai đoạn 2: Thờng là: Điều kiện cha biết đợc gọi là ẩn? ở bài này cả số lợng cà chua và khoai tây đều cha biết nên có thể gọi ẩn là 1 trong 2 loại (hoặc cả 2 loại). Cụ thể: Gọi khối lợng khoai là x(kg) x>0 Thì khối lợng cà chua là 480 x(kg) (Hoặc khối lợng khoai là x, khối lợng cà chua là y(kg) x, y > 0 => x+ y = 480) + Giai đoạn 3: Lập phơng trình. Do mối quan hệ Khoai = 3 x cà chua Ta có phơng trình x = 3(480 x) (*) Hoặc =+ = 480 3 yx yx (**) + Giai đoạn 4 : Giải phơng trình. Giải (*) ta đợc x = 360(kg) Hoặc giải (**) ta đợc x = 360(kg); y = 120(kg) + Giai đoạn 5 : Đối chiếu nghiệm đã giải với điều kiện đề ra xem mức độ thoả mãn hay không thoả mãn. Từ đó => Khối lợng cà chua là 480 360 = 120(kg). Cho học sinh thử lại => đúng. + Giai đoạn 6 : Trả lời Vậy khối lợng khoai đã thu là 306kg Khối lợng cà chua đã thu là 120kg. 8 + Giai đoạn 7: - Từ việc chọn ẩn khác nhau dẫn đến lập phơng trình hoặc hệ phơng trình cho ta nhiều cách giải, nhng lu ý cho học sinh tốt nhất là đa về lập phơng trình đơn giản hơn, dễ giải hơn. - Có thể từ bài toán này xây dựng bài toán mới. Chẳng hạn : Một phân số có tổng của tử và mẫu là 480. Biết rằng mẫu số gấp 3 lần tử số. Tìm phân số đó. III. Phân loại dạng toán giải bài toán bằng cách lập phơng trình (hệ phơng trình). Các bài toán giải bằng cách lập phơng trình có thể phân lôi thành một số dạng chính nh sau: 1. Dạng toán chuyển động. Ví dụ 6: Một sà lan xuôi dòng từ A đến B mất 2,5giờ và ngợc dòng từ B về A mất 4 giờ. Biết vận tốc dòng nớc là 3km/h, tính khoảng cách AB. H ớng dẫn. - Biết vận dụng linh hoạt công thức: Quãng đờng = Vận tốc x Thời gian. - Bài toán trên là bài toán chuyển động trong dòng chảy. Ta có công thức: Vận tốc xuôi dòng = Vận tốc riêng + Vận tốc dòng nớc. Vận tốc ngợc dòng = Vận tốc riêng Vận tốc dòng nớc. (Vận tốc riêng > Vận tốc dòng nớc). - Nếu chọn ẩn gián tiếp, tức là: Gọi vận tốc riêng của sà lan là x(km/h) (x>3) ta dẫn đến phơng trình. 2,5(x + 3) = 4(x 3) (1) Nếu chọn ẩn trực tiếp, tức là: Gọi khoảng cách AB là x(km) dẫn đến phơng trình. 3 4 3 52 += xx , (2) 9 Rõ ràng phơng trình (1) đơn giản hơn phơng trình (2) Lu ý: Trong khâu chọn ẩn có thể đặt một đại lợng trung gian làm ẩn cho ta phơng trình đơn giản hơn. 2. Dạng toán liên quan đến số học. Ví dụ 7: Tìm hai số biết tổng là 17 và tổng các bình phơng của chúng là 157 H ớng dẫn giải: Cách Quá trình Số thứ nhất Số thứ hai P.t xây dựng 1 Chi bình phơng )( 0xx 17 x x 2 + (17-x) = 157 Bình phơng x 2 (17-x) 2 2 Chia bình phơng )( 0xx y( )0y =+ =+ 157 17 22 yx yx Bình phơng x 2 y 2 Chú ý: Với dạng toán liên quan đến số học cần chú ý về cấu tạo số; đặc biệt chú ý điều kiện của ẩn. 3. Dạng toán về năng suất lao động (tỉ số phần trăm). Ví dụ 8: Trong tháng đầu 2 tổ sản xuất đợc 400 chi tiết máy. Trong tháng sau tổ một vợt mức 10%, tổ hai vợt mức 15% nên cả hai tổ sản xuất đợc 448 chi tiết máy. Tính xem trong tháng đầu mỗi tổ sản xuất đợc bao nhiêu chi tiết máy. H ớng dẫn giải: - Biết năng suất chung của hai tổ trong tháng đầu là 400 chi tiết. Nếu biết đợc 1 trong 2 tổ sẽ tính đợc tổ kia(chọn ẩn). - Giả sử đã biết năng suất của tháng đầu sẽ tính đợc năng suất của tháng sau. - Tính năng suất của từng tổ tháng sau từ đó lập đợc phơng trình. Từ đó học sinh có thể giải theo 2 cách sau: Cách 1: Gọi số chi tiết máy tổ 1 sản xuất trong tháng đầu là x (x nguyên, 0<x<400) 10 [...]... 8 dạng toán thờng gặp về toán giải bài toán bằng cách lập phơng trình ở Đại 8 và Đại 9 Mỗi dạng toán có những đặc điểm khác nhau, tuy nhiên ở mỗi dạng tôi chỉ nêu một ví dụ điển hình có tính chất giới thiệu việc biểu diễn sự tơng quan giữa các đại lợng để lập phơng trình c Kết luận Khi dạy giải bài toán bằng cách lập phơng trình (hệ phơng trình) , giáo viên cần chú ý đi sâu ở các bớc lập phơng trình, ... học sinh luyện tập các phơng pháp biểu diễn sự tơng quan giữa các đại lợng bởi một biểu thức của ẩn, trong đó ẩn số đại 14 diện cho một đại lợng nào đó cha biết, bởi vì đây là yếu tố quan trọng nhất để học sinh nắm vững cách giải bài toán bằng cách lập phơng trình Đây là những kinh nghiệm mà tôi đã rút ra đợc trong quá trình giảng dạy, tôi đã cũng trao đổi với các đồng chí trong tổ toán của trờng,... tổ cũng rất ủng hộ và cùng tôi áp dụng cho học sinh hai khối 8 và 9 của trờng ở phần chủ đề tự chọn Đó là suy nghĩ nhỏ bé của tôi khi dạy giải bài toán bằng cách lập phơng trình, chắc chắn không tránh khỏi những thiếu sót Tôi rất mong nhận đợc sự góp ý, chỉ dẫn của các cấp lãnh đạo và đồng nghiệp Qua đó giúp tôi hoàn thiện hơn trong quá trình giảng dạy và bổ sung tiếp ở những năm sau Tôi xin trân trọng...Dẫn đến phơng trình x 10 15 + ( 400 x ) = 48 100 100 Cách 2: Gọi số chi tiết máy tổ 1 làm đợc trong tháng đầu là x và số chi tiết máy tổ 2 làm đợc trong tháng đầu là y (x,y N ; 00 Số ngày đội 2 làm một mình để sữa xong con mơng là y (ngày) y>0 Ta lập đợc hệ phơng trình 1 1 1 x + y = 24 1 = 3 x 2y Giải hệ tìm... Khối lợng của khối nớc lớn là: 168 4,2( x 2) Ta có phơng trình: 168 168 +1 = 4,2 x 4,2( x 2) x 2 2 x 80 = 0 x1 = 10, x 2 = 8(loại ) Vậy khối nớc nhỏ đun nóng hơn 10oC Tóm lại: 13 ở dạng toán này đòi hỏi học sinh phải biết liên hệ phù hợp với kiến thức vật lí, hoá học, chọn ẩn thích hợp, nhờ mối quan hệ giữa các đại lợng lập phơng trình 8 Dạng toán có chứa tham số: Ví dụ 12: Một du khách đi từ A đến... ở kho thứ nhất bằng 12 số thóc ở kho thứ hai Tính số thóc ở mỗi kho lúc đầu? 13 Hớng dẫn giải Cách 1 2 Quá trình Cha chuyển Đã chuyển Cha chuyển Đã chuyển Kho I Kho II x + 100 x+100-60 x (x>0) x-60 x(x>0) x+60 y(y>0) y+60 P.t xây dựng 12 ( x + 60) 13 x y = 100 12 x 60 = 13 ( y + 60) x + 100 60 = 6 Dạng toán có liên quan đến hình học Ví dụ 1 và ví dụ 4 12 Tóm lại: - Trong dạng toán này học sinh... (ngày) y>0 Ta lập đợc hệ phơng trình 1 1 1 x + y = 24 1 = 3 x 2y Giải hệ tìm đợc x= 40, y= 60 Tóm lại:- ở dạng toán này ta thờng coi toàn bộ công việc là một đơn vị công việc và biểu thị bởi số 1 - Nắm chắc mối quan hệ giữa các đại lợng nhờ hệ thức: Công việc = Năng suất x Thời gian 5 Dạng toán về tỷ lệ chia phần (Thêm, bớt, tăng, giảm tỷ số của chúng) Ví dụ 10: Có 2 kho dự trữ thóc Kho thứ nhất nhiều... vẽ hình minh hoạ 7 Dạng toán có nội dung vật lí Hoá học Ví dụ 11: Dùng hai lợng nhiệt, mỗi lợng bằng 168KJ để đun nóng 2 khối nớc hơn kém nhau 1kg Thì khối nớc nhỏ nóng hơn khối nớc lớn 20C Tính xem khối nớc nhỏ đợc đun nóng thêm mấy độ? Hớng dẫn giải: - Học sinh nhớ đợc kiến thức vật lý: + Công thức tính nhiệt lợng Q = c m(t1 t2) + Nhiệt dung riêng của nớc c = 4,2 KJ/kg độ Giải: Giả sử khối nớc nhỏ . Phân loại dạng toán giải bài toán bằng cách lập phơng trình (hệ phơng trình) . Các bài toán giải bằng cách lập phơng trình có thể phân lôi thành một số dạng chính nh sau: 1. Dạng toán chuyển động. Ví. đối với phơng trình bậc 2, hệ ph- ơng trình. II. Các giai đoạn giải bài toán bằng cách lập phơng trình, hệ phơng trình. 1. Phân giai đoạn: Để đảm bảo 6 yêu cầu về giải một bài toán và 3 bớc. kiện thay đổi ẩn và giả thiết. - Giải bài toán bằng cách khác, tìm cách giải hay nhất. 2. Ví dụ minh hoạ cho các giai đoạn giải bài toán bằng cách lập phơng trình. Ví dụ 5: 7 Nhà Bác An thu
- Xem thêm -

Xem thêm: Giải bài tập bằng cách lập hệ phương trình toán lớp 9, Giải bài tập bằng cách lập hệ phương trình toán lớp 9, Giải bài tập bằng cách lập hệ phương trình toán lớp 9

Từ khóa liên quan