1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Cutting Fluids‘ Everything flows and nothing_2 ppt

10 284 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 665,63 KB

Nội dung

cutting  uid,  although  certain  non-ferrous  metals  may have a susceptibility  to staining, so here, it is  prudent  to  discuss  the  problem  with  the  cutting  uid manufacturer,  • Water-supply compatibility – a  water-soluble  cut- ting uid should ‘ideally’ be capable of being diluted  with  any water supply. Geographical locations can  create variations in water supply and its condition,  this latter factor is especially true for water hardness  (i.e see Fig. 199b), where its hardness can vary quite  considerably.  us,  the  ‘ideal’  cutting  uid  would  not  cause  the  typical  problems  of:  foaming in  so  waters; or forming  insoluble soaps in hard waters, • Freedom from tacky, or gummy deposits – as water  soluble uids dry out on a machine, or component’s  surface, the water content evaporates to leave a resi - due which is basically the product concentrate. is  residue  should  ideally  be  light  and  wet,  allowing  it to be easily wiped-o. However, any gummy, or  tacky deposits collect swarf and debris, necessitat - ing increased machine and component cleaning, • ‘Tramp oil’ tolerance – is a lubricating, or hydraulic  oil which leaks from the machine tool and contam - inates the cutting uid. Most modern machines are  equipped with ‘total-loss’ 6  slideway lubricating sys- tems which can contaminate the cutting uid with  up to a litre of oil per day – on a large machine tool.  e ‘ideal’ cutting uid would be capable of toler - ating  this  contamination  without  any  detrimental  eects on its operating performance. Some cutting  uids  are  formulated  to  emulsify  the  ‘tramp-oil’ ,  while  other  uid  formulations  reject  it,  allowing  6  ‘Total-loss’ uid systems, are as their name implies in that they  purposely leak oil to the machine’s bearing surface, requiring  periodic  tank  replenishment.  When  this  oil  leaks-out  of  the  machine  tool  it  is  termed:  ‘tramp-oil’ ,  therefore  the  oil  will  eventually end up in the machine tool’s coolant tank, where it  is either tolerated by the coolant product, or is separated-out,  requiring periodic ‘tramp-oil skimming’. NB  ‘Tramp-oil’  losses  are  invariably  not  accounted  for  in  many  production  shops,  which  invariably  means  their  ‘eco- nomic  model’  for  such  losses  are  habitually  not  considered,  or  not  even  thought  about  by  the  company.  It  has  been  re- ported that on a quite ‘large-sized’ horizontal machining cen- tre, it can lose up to 365 litres of ‘tramp-oil’ per annum, which  is  an  on-going cost that  needs to  be addressed.  Multiply this  individual  machine  tool  loss  by the  number  of  machines  in  the manufacturing facility and this will represent considerable  unaccounted for expenditure! the residual ‘tramp-oil’ to oat to the surface for re- moval by physical ‘skimming’ , • Cost-eectiveness – but what does this term mean?  ere  was  a  time  when  the  cost-eectiveness  was  simply judged in terms of the price per litre of the  product  concentrate.  Fortunately,  there  are  only  few engineering companies who still take this view,  with  most  recognising  that  there  are  many  inter - related  factors  that  contribute  to  cost-eciency.  Some of these factors might be the: dilution ratio;  sump-life;  material  versatility;  tool  life;  machined  component quality; health and safety aspects; plus  many others.  Having identied the ‘ideal’ cutting uid features, one  must  unfortunately  face  reality,  as  there  is  no such  product that encompasses  all of these desirable charac- teristics – at the  optimum level in just one cutting uid  product. However,  all cutting uids are not equal and  even apparently similar products may well perform in  quite dierent ways! erefore, it is for the machine- shop  supervisors/managers  –  in  conjunction  with  other interested parties: purchasing; health and safety;  unions; etc., to select a reputable supplier who is pre - pared to undertake the necessary survey and ‘trouble- shooting’ exercise to recommend the best uid(s) for a  particular manufacturing environment.  Today,  there  are  many  dierent  types  of  cutting  uids  available  they  can  be  classied  according  to  widely varying criteria, although some unied system  of  terminology  exists  in  various  countries  guidelines  and Standards. is commonality of ‘language’ reects  both  the  chemical  and  technical  requirements  of  the  users. On the basis of the various countries publicised  cutting  uid  literature,  the  following  classication  is  perhaps  the most useful – from  the  user’s point of  view. Broadly speaking, it was previously shown in Fig.  197,  that  cutting  uid  groups  are of two  main  types,  either  ‘oil-’ ,  or  ‘aqueous-based’.  e  ‘aqueous’  cutting  uids can be divided into  ‘emulsiable’ and ‘water-sol- uble’ types. As has already been mentioned, the former  ‘oil-based’ cutting uids are supplied as ready-for-use  products, while ‘aqueous’ types are normally found in  the form of a concentrate, which must be mixed with  water, prior to use. Once mixed with water, the  ‘emulsi- able’ cutting uids form an emulsion, conversely, the  ‘soluble’ variety forms a solution. In both of these cases,  the  resultant  cutting  uid  product  is  termed:  ‘water- mixed’.  In the  following  section, the  various types  of  cutting  uids  currently  available  will  be briey men - tioned. Cutting Fluids  .. Mineral Oil, Synthetic, or Semi-Synthetic Lubricant? Mineral Oil In order to manufacture cutting uids the raw materi- als are naturally occurring oils, such as: mineral oils;  animal and vegetable oils; or fats. Of these oils, the for - mer mineral oils are probably most commonly utilised  by the manufacturing industry. ese mineral oils, in  a  similar  fashion  to  naturally  occurring  oils,  tend  to  be  complex  mixtures  of  widely  varying  compounds.  Such  compounds consist of carbon and hydrogen and as  such, are usually referred to a  ‘hydrocarbons’. In addi- tion, they will contain: sulphur; nitrogen; plus various  trace elements.  So that the  mineral oil can be separated out to form  a  ‘stock oil’ – with natural lubricating properties, ther- mal processes are employed by the uid manufacturer.  ese  partly-rened  ‘stock-oils’  are  still  chemically  complex mixtures of hydrocarbons, with widely vary - ing  characteristics.  By  way  of  an  example  of  the  di - verse nature of ‘crude oil’ , it is a mixture of more than  one  thousand  hydrocarbons,  with  dierent  chemical  structures.  Such  widely  varying  characteristics  make  it  impossible  to supply  mineral  oil to  closely dened  specications, which  limits  its  uses  and performance  as a cutting uid. e  complex structure of  a cutting  uid made up entirely from naturally occurring oils, is  schematically illustrated in Fig. 198a.  Synthetic Lubricants e  use  of  Synthetic lubricants  cannot  be  compared  with  those  lubricants  that  are  extracted  from  natu - rally  occurring  oils,  since  the  properties  of the  latter  are always an aggregate of the properties of their many  dierent components, as such, cannot be exactly pre - dicted. While the former synthetic lubricants are made  from two types of raw material: 1. Mineral oil – normally from: polyalpha olen and  alkali aromatics, 2. Polybutenes. At  present  (i.e.  from  around  the  late  1980’s,  until  now),  synthetic  hydrocarbons  predominate,  as  they  are not derived from mineral oils,  they have become  of  increased  importance.  In  particular,  they  include  derivatives  from  ‘fractioning’ 7 of  plant  oils.  e  most signicant  classes  of  compounds are  the  esters  and  polyglycols. ese synthetic lubricants being a solution  of chemicals, which usually contain: corrosion inhibi - tors; biocides; dyes; in water. Moreover, they may con - tain such additions as synthetic lubricity additives and  wetting  agents.  Synthetic lubricants form  transparent solutions and as a result, provide good visibility of the  cutting operation.  In use, synthetic uids require special attention in  their application, because they contain no mineral oil,  they tend not to leave a corrosion-protective oily lm  on machine surfaces. As a result, it is essential to lubri - cate exposed machine tool surfaces carefully. In addi - tion to this lack of protection, there may be some eect  on certain paint nishes and even degradation of the  machine’s seals, as a result of this synthetic uid enter - ing  the  machine  tool’s  lubrication  system.  Normally,  these problems of practical usage, limit these synthetic  lubricants in the main, to grinding operations. Semi-Synthetic Lubricants Today, the use of Semi-synthetic lubricants, or ‘Micro- emulsions’ – as they are sometimes known, has become  much more widespread, because of certain advantages  they have over mineral-soluble oils. By  increasing  the  ratio  of:  emulsier-to-oil  in  the  formulation,  either  by  reducing  the  oil  content,  or  by  increasing  the  level  of  emulsiers,  the  product  takes  on  dierent  characteristics  from  those  of  min - eral-soluble  oils.  Due  to this increased  ‘ratio’ , the  oil  particles  formed,  are  signicantly  smaller  than  those  found with the mineral-soluble oil types (i.e. see Fig.  201a). Hence, these  ‘micro-emulsions’ , visually appear  to be  translucent, or even transparent, owing to the fact  that the  oil particles are smaller than the wavelength of light (i.e. <0.5 µm). is translucency is an obvious ad- vantage where workpiece visibility is important to the  machine setter/operator. In addition, the high level of  emulsiers in the product leaves some ‘spare capacity’ ,  which  enables  the  ‘micro-emulsion’  to  emulsify  any  oil-leakage  from  the  machine.  is  emulsication  of  7  ‘Fractionation’ , is the breakdown of crude oil into its constit- uents (i.e. fractions), by distillation.  Chapter  Figure 198. The basic structure of an oil-based cutting uid and an ‘oil-in-water’ emulsifying molecule. [Courtesy of Cimcool] . Cutting Fluids  Figure 199. The principle of polar and passivating corrosion protection and the minimum requirements for water quality. [Courtesy of Cimcool] .  Chapter  the oil 8 , keeps the machine tool cleaner and will delay  the formation of a layer of ‘tramp-oil’ on the surface –  which might otherwise encourage unwanted bacterial  growth. e  denition of Semi-synthetic cutting uids 9   can cause some diculty, but generally the oil content  is  much lower than with the mineral-soluble oils, rang- ing from approximately 10 to 40%.  Additives  for:  corrosion  inhibition;  bacterial  con - trol; lubricity 10 ; EP; are employed in the same manner  as for mineral-soluble oils, also, there is oen an addi - tion of a blue, or pink dye, as these translucent micro- emulsions can appear to look somewhat ‘watery’ oth - erwise.  Although  translucent  micro-emulsions  are  initially  formed,  Semi-synthetics do  not  go  cloudy  in  use. ey contain excess emulsiers to ensure that ne  micro-emulsion of oil particles are formed in water. As  previously mentioned, these ‘spare’ emulsiers enable  the  micro-emulsion  to  absorb  tramp  oil.  Hence,  as  these ‘spare’ emulsiers are consumed by suspending  the ‘tramp-oil’ , both the amount of oil in the emulsion  and the oil particle size increases. is  increase in oil particle size causes  more  incident light to be  reected  and results in the visual  ‘clouding eect’ within the lu- bricant. In particular, this ‘cloudiness’ of the lubricant  is not necessarily an indication that there is anything  wrong with the uid, it is merely an suggestion of the  oil absorbed by the cutting uid.  All cutting uids, whether ‘aqueous-’ , or ‘oil-based’ ,  may contain some: mineral oils; synthetic products; or  a combination of both. e choice of raw material and  composition depends on certain parameters and their  actual  composition  (i.e  its  formulation)  will  depend  8  ‘Emulsication of tramp-oil’ when using Semi-synthetic oils,  will only occur, until all of the ‘spare’ emulsiers are used up!  erefore,  aer  this  time,  the  excess  ‘tramp-oil’  will  oat on  the cutting uid’s surface. NB  Some  Semi-synthetic  formulations  will  emulsify  only  small  quantities  of  ‘tramp-oil’ ,  while  others  can  emulsify  much larger concentrations. 9  Perhaps  the  easiest  and  best  uid  denition  is  this:  ‘A semi- synthetic cutting uid forms a translucent emulsion and con- tains mineral oil’. 10   ‘Lubricity’ , or ‘Oiliness’ as it is oen known, is dicult to de- ne with any precision. One reasonable denition is that Lu- bricity is: ‘[e signicant] dierences in friction greater than can be accounted for on the basis of viscosity, when comparing dierent lubricants under identical test conditions.’ [Source:  American Society of Automotive Engineers] upon many factors, which is closely-guarded secret by  any lubricant manufacturer.  .. Aqueous-Based Cutting Fluids A large proportion of cutting uids used for machin- ing operations are still of the aqueous-based types (Fig.  197), as they combine the excellent heat-absorbing ca - pacity of water, with the lubricating power of chemical  substances. Such cutting uids oer excellent cooling,  lubricating and wetting properties. Machine tools re - quire protection from the lubricant ingress and should  be compatible with lubricating and hydraulic systems  on  the  machine,  making  it  possible  to  apply  water- mixed  cutting  uids  to  the  manufacturing  environ- ment.  e  aqueous-based  lubricants  can  be  utilised  across  quite  a  diverse  range  of  workpiece  materials,  ranging from steels, to non-ferrous metals.  An  aqueous  cutting  uid  can  consist  of  naturally  occurring  oils  such  as:  mineral  oil;  synthetic  mater- ial;  or  a  combination  of  both,  but  generally  they  are  present  in  the  form  of an  emulsion,  or solution  – as  previously  discussed.  Other  forms  of  cutting  uids,  such  as:  suspensions;  gels;  pastes;  are  rarely  used  in  the production  process. Hence,  the commonest form  in which aqueous cutting uids are used is as an emul - sion.  Much  of  this  cutting  uid  terminology  has  al - ready been discussed, but is worth restating, to ensure  that  its signicance  is suciently  comprehended.  An  emulsion  is a  disperse system formed by  mixing  two  uids which are not soluble in each other. In the emul - sion, one of the uids forms the internal phase, which  is dispersed in the form of droplets suspended in the  external  phase,  or  ‘medium’  –  as  its  is  oen  known.  Such  corresponding  cutting  uids  are  of  two  types:  ‘emulsive’ , or ‘emulsiable’ – of which the former type  is  normally the  most  commonly  used.  e ‘emulsive’  cutting  uid  consists  of  an  oil-in-water  emulsion,  in  which the oil forms the internal phase. While its coun - terpart,  the  ‘emulsive’  type  is  the  ‘emulsiable’  solu - tion,  consisting  of  a  water-in-oil  emulsion,  but  here,  the water is the internal phase – lately this cutting uid  has become less important. An aqueous ‘emulsive’ cutting uid always contains  a  stock  oil,  usually  having  a:  mineral  oil;  synthetic  hydrocarbon; synthetic ester; or fatty oil, etc.; together  with  certain  additives  to  the  formulation.  e  most  important  additives  tend  to  be:  ‘emulsiers’;  corro - sion inhibitors;  stabilisers  and  solubilisers;  anti-foam  Cutting Fluids  agents; micro biocides; as well as complex formers (i.e.  see Fig. 197). Consideration will now be given to each  of these ‘additives’ in turn: ‘Emulsifiers’ e  ‘emulsiers’  are  necessary  to  help  form  a  stable  emulsion and as such, are very important for the tech - nical  characteristics  of  the  cutting  uid.  ‘Emulsiers’  make  it  possible  for  the  oil  droplets  to  form  and  re - main suspended in water, preventing them from merg - ing and oating upwards to form a surface layer in the  uid’s tank.  ‘Emulsiers’ reduce the surface tension and  form a lubricating  lm at the boundary surface. ese  ‘emulsier’ molecules are bipolar in characteristic and  as  a  result  ‘line-up’  like  the  bristles  on a  brush,  with  one  end  toward  the  oil  and  the  other  end  facing  the  water, as shown in Fig. 198b. In this way, the ‘emulsi - er’  forms  a  lm  which  is  one  molecule  thick  at  the  boundary surface. Corrosion Inhibitors e main task of a corrosion inhibitor in any aqueous  cutting uid is to prevent the water in the uid from  corroding the exposed portions of the machine tool,  such as its: slideways; spindle nose; ballscrews; etc. e  mechanism  by  which  dierent  corrosion  inhibitors  operate, will vary widely and one commonly used ver - sion of ‘inhibitor’ , consists of an additive which forms  a  protective  lm  on  the  exposed  metal’s  surface 11 .  11  ‘Galvanic corrosion’ , for two metals in contact in the ‘electro- chemical series’ the  further apart they  are  in  this  ‘series’ ,  the  greater their electro-potential and the faster the rate of corro- sion. For example, in this ‘series’ gold (i.e. being a ‘noble metal’)  is at one extreme, thus having a potential dierence of +1.70  v – being cathodic, while at the other end of the galvanic table,  calcium  (i.e.  being  a  ‘base metal’)  has  a  potential  dierence  of –2.87 v – being anodic. Hence, the anodic metal will cor- rode,  while the  cathode remains  unchanged,  hence  in gold’s  case, the term ‘noble’ metal is used.us,  water-miscible u- ids can penetrate between bolt threads, setscrews and xtures  and as water is an electrolyte – a liquid that can  conduct an  electrical  current, the  presence of water  produces  a  galvanic  electrical current ow between these mating parts. So, say on  a lightweight workpiece xture – perhaps made from alumin- ium  (–1.67  v)  with  this  being  located  onto  a  machine  tool’s  table – normally produced from cast iron (–0.44 v). us, the  potential dierence here being 1.23 v, which is not too acute,  as both these metals are in fact, relatively close-together in the  ‘electro-chemical series’.  ese  corrosion  inhibitors  consist  of  long,  narrow  molecules which are negatively-charged and as such,  are attached to the metal in contact  (Fig. 199a – top  schematic  diagram,  shows:  rust protection by  polari- sation, whereas the lower schematic diagram depicts;  rust protection by a passifying lm). ese ‘lms’ that  are  subsequently  formed,  are  no  thicker  than  just  a  few molecules and as such, are invisible. Nevertheless,  such ‘lms’ can eectively prevent the electro-chemi - cal process of corrosion, such as passivation by means  of nitride, but the latter type is now being eectively  phased-out.  Stabilisers and Solubilisers Stabilisers  considerably  extend  the  life of  the  concen- trate, while solubilisers act to increase the oil’s solubil- ity. Various alcohols and glycols can be used as stabi- lisers, or solubilisers. Anti-Foaming Agents Anti-foaming  agents  are  oen  known  by  the  alter- native  names  of:  ‘anti-froth-’;  or  ‘defrothing-agents’;  being utilised to prevent the formation of foam. Sili - cones, while being subject to certain restrictions have  proved  in  the  past  to  be  very  popular  anti-foaming  agents. A typical restriction to that of using silicones  additives in machining operations, might be because  aerward it may prove dicult to either: paint; coat;  or  adhesively-bond  to  the  machined  parts.  In  the  past  when  both  the  coolant  pressures and ow  rates  were  low,  foaming did  not present  too  great a prob - lem,  but  nowadays,  the  pressures  and  ow  rates  are  much  greater  and  severe  coolant  agigtation  can  re - sult, creating potential foaming conditions. Foaming  is  at  its  most  prevalent  when  a  newly-charged  clean  and fresh cutting uid is employed and as this coolant  is  contaminated  with:  ‘tramp-oil’;  metal  nes;  abra - sive  grains; from  the subsequent machining  process,  these  contaminants  will  tend  to  suppress  foaming  tendencies.  NB  Galvanic corrosion occurs between contact of dissimilar  metals – in the presence of an electrolyte. is electrolytic con- tact might at the least cause either: surface staining; mild corro- sion; or pitting, with its severity depending upon how long the  two metallic surfaces are in contact in the presence of water.  Chapter  Today,  anti-foaming  agents  tend  to  be  ‘branch- chained’  higher  alcohols  –  being  insoluble  in  wa - ter,  or  as  mentioned  above,  silicones.  Both  alcohols  and  silicones  evidently  disrupt  the  foam-producing  surface  lm  with  that  of  an  alternative  gas-perme - able  surface  lm,  causing  the  surface-active  liquid  surrounding  each  bubble  to  drain  away,  causing  the  foam layer to collapse. If severe foaming occurs, anti- foaming agents are not the answer, as eventually these  ‘anti-foams’  get  carried  away,  or  ltered-out  of  the  coolant  on  the  resultant  machined:  chips  and  swarf;  workpieces;  or  on  coolant  lters.  e  problem  to  foaming  may  not be  due  to  the  lack  of  ‘anti-foams’ ,  but may be the result of air leaks that are sucking air  into  the  coolant  stream.  ese  air  leaks  oen  arise  around  the  pipe  unions,  or  at  pipe-connectors  to  either  the  valves  and  pumps  in  the  coolant  delivery  system. Microbiocides Microbiocides  are  oen  added  to  the  aqueous-based  cutting uid as they help prevent the dramatic and un - controlled growth of microbes in the coolant. Micro- biocides  uses  are  normally  limited,  owing  to  the po - tential  skin-care  consideration  –  more  will  be  said  concerning this very important topic later in the chap - ter, when ‘health-issues’ will be discussed.  .. Water Quality e  main  constituent  of  any  aqueous-based  cutting  uid is obviously water and by nature, it is impure. e  impurity depends on the source: rain-; river-; spring-;  ground-water;  etc.  e  water  may  also  contain:  dust  particles;  oxygen;  nitrogen;  calcium  and  magnesium  salts;  oen  with  smaller  quantities  of:  ammonia;  bo - ron;  ourine;  iron;  nitrate;  strontium;  aluminium;  arsenic;  barium;  phosphate;  copper  and  zinc.  Addi - tionally,  the  water  has  in  its  presence  micro-organ - isms,  such  as:  algae;  bacteria;  fungi  and  viruses  (i.e.  see  Fig.  203);  although  in  dierent  orders  of  magni - tude.  So,  depending  on  its  composition,  water  can  aect  the  aqueous-based  cutting  uid  in  many  ways  and  since  the  composition  varies  throughout  the  year,  these  seasonal  variations  will  have  an  eect  on  its  use.  By far  the greatest eect  on the  properties of  the cutting uid is caused by the hardness of the water.  Water’s hardness depends on the concentration of ele - ments 12  such as: calcium, magnesium and other heavy  metals like iron and manganese. Hard water may cause  a soapy deposit, which will eventually block lters, or  destabilise  the  emulsion and  may  have  a detrimental  eect on the uid’s corrosion protection. Equally, so  water can be a problem, but for a dierent reason, in  this case it can promote foaming under ‘abusive’ ma - chining conditions.  e  degree  of  alkalinity  of  the  water  can  be  ex - pressed as a  pH-value (i.e. see the pH-scale shown in  Fig. 202b)  and this  is an important  measurement,  as  it aects its usage and can react to human skin 13  caus- ing ‘serious complaints’ – more will be said concerning  these  health  issues  later  in  the  chapter.  Alkalinity  in  the main, aects the growth of microbes (i.e. see Fig.  203b) and the degree of corrosion protection aorded  12  ‘Water hardness levels’ , are calculated based upon the quantity  of  ‘grains’  of  hardness  minerals  the  water  contains.  By  way  of  example,  one grain of  calcium  carbonate,  constitutes  17.1 parts million –1 (ppm) per 3.785 litres (i.e. equivalent to a U.S.  gallon).  ‘Salts’  such  as  sodium  chloride  and  sodium sulphate  are found in hard water, where they contribute to corrosion, or  rust – if not ‘inhibited’. Moreover, the greater the cutting uid’s  solution salt content, the more coolant concentrate is required  to prevent subsequent corrosion. Further, coolant degradation  occurs  with  time  and  usage.  For  example,  a  new  charge  of  relatively  so  water  admixed  with  coolant  concentrate,  will  initially have say, a 3-grain hardness, but aer one month’s use  its hardness will have increased to between 12–14 grains and,  aer two months this hardness will have increased still further,  to  between  24–27  grains.  is  problem  is  exacerbated  if  the  water content evaporates, needing periodic cutting uid analy- sis to maintain optimum coolant performance.One method of  signicantly reducing water of its hardness minerals, is to run  it  through  a  water  soener,  which  removes  the  calcium  and  magnesium ions, replacing them with sodium  ions, although  residue build-up will be signicantly reduced, corrosion may  now  be  a  problem,  so  for  this  reason  soened  water  is  not  recommended  when  using  water-miscible  coolants.  Other- wise,  boil  the  water  – ensuring  that no  soener, or anti-cor- rosion agents were present prior to using the condensed water  product (i.e from the boiling process). Deionized water is the  best source of pure water, as a deionizer removes all dissolved  minerals, creating distilled water.  13  ‘Human skin’ ,  varies  from  one  body-region  to  another,  but  generally, it  has  a  pH-level  slightly  biased  toward  the  acidic  region of the scale, at approximately 6.8 pH (e.g. a value of 7.0  pH is considered as ‘neutral’). NB  Skin  also  has  a  protective  layer  of  natural  oils,  that  act  to retard moisture evaporation, acting as a form of ‘defensive  shield’ against some forms of biological attack. Cutting Fluids  by the emulsion. If alkaline levels increase this results  in improved protection, particularly when machining  ferrous workpieces. In view of the importance of water  composition  for  the  eectiveness  of  a  water-mixed  cutting uid, it is essential to know the quality of the  water source available and to take account of this fac - tor when selecting a concentrate. Cutting uid manu - facturers  undertake  water  analysis,  as  do  local  water  companies. In  Fig. 199b,  the minimum requirements  for  water  quality  for  aqueous-based  cutting  uids  is  shown.  8.5 Cutting Fluid Classification – According to Composition Generally speaking, cutting uids are purchased under  the  following  classications,  according  to  their  com - position: • Synthetic uids –  are  those  cutting  uids  which  contain  very  little,  or  no  natural  oil.  e  various  components  such  as  the  actual  cutting  uid  are  nely  distributed  in  water,  as  such,  they  form  a   watery transparent solution – shown in a schematic  representation  in  Fig.  200a.  e  applications  of  synthetic  cutting  uids  range  from  light-to-heavy  cutting,  together  with  usage  in  grinding  applica - tions. In order to  ensure the necessary lubricating  power desirable for heavy cutting operations, some  of these products contain synthetic lubricants (Fig.  200b).  e  major  properties  of  synthetic  cutting  uids can be summarised as follows: –   A very clean and transparent uid, –   Excellent corrosion protection, –   A long life cutting uid, –   Outstanding cooling capabilities, –   Easy to mix, –   Does not burn, or smoke. • Semi-synthetic uids – can contain up to 41% oil  and when mixed with water they have a translucent  property (Fig. 200c).  Extreme  pressure  (EP)  addi - tives and synthetic lubricant can be added, in order  to widen the range of potential workpiece materials  and  applications. e properties of semi-synthetic  cutting  uids can be summarised in  the following  manner: –   Very clean in appearance, –   Excellent corrosion protection, –   Long life of cutting uid, –   Outstanding cooling capabilities, –   Good wetting properties, –   Easy to mix, –   Does not burn, or smoke. • Emulsion uids – contain a high proportion of oil  and  when  the  concentrate  is  mixed  with  water  it  has  a ‘milky appearance’ (Fig. 201a). Cutting  uid  products intended for very heavy cutting operations  additionally  contain  EP  additives  (Fig.  201b).  e  properties  of  an  emulsion  cutting  uid,  are  sum - marised below: –   Clean, –   Oer good corrosion resistance, –   Long life of emulsion, –   Outstanding cooling capabilities, –   Easy to mix, –   Do not burn, or smoke. Finally, for all of these various cutting uid types and  compositions, the dierences in the range of applica - tion of: synthetic; semi-synthetic; emulsion uids; de - pends upon the respective machining requirements. In  general, the  heavier the cutting operation, the higher the  cutting forces produced and the greater the oil content  required.  is  observation,  means  that  synthetics  are  normally used for  lighter cutting operations, whereas,  emulsions are usually utilised for heavy-cutting appli- cations, while the  semi-synthetics tend to be employed  as a  general-purpose (i.e. alternative) cutting uid.  8.6 Computer-Aided Product Development e latest cutting uids are very complex products and  a considerable amount of research and development (R  and D) is required to perfect them. e quantity of raw  materials  that  have  diering  characteristics  and  the  number of interactions between them, means that the  possible combinations are potentially enormous. Even  when most of the possible combinations are obviously  unnecessary and hence could be disregarded, this still  leaves the possibility of many thousands of coolant ad - ditive  permutations  and  their  respective  interactions  to  investigate,  which  would  be  a  ‘Herculean  task’  to   Chapter  Figure 200. Schematic representation of synthetic variaties of cutting uids. [Courtesy of Cimcool]. Cutting Fluids  decipher and then to optimise! To press the point still  further,  this  situation  of  determining  the  optimum  combination  is  analogous  to  that  of:  ‘looking  for  a  needle in a haystack’ , where the conventional empiri - cal methods become no better that in eect, searching  at random! Luckily a solution is at hand, by the evalu - ation  using computer  technology, when utilised  with  specially-developed programs. Computer-aided prod - uct development  will  as a result,  eciently  provide a  solution backed-up by statistical techniques, enabling  many  thousands  of  combinations  to  be  assessed,  re - ducing the nal choices to just a few cutting uid com - binations. In this way it is possible to rapidly and ac - curately optimise the solution, as depicted in Fig. 204,  where a Computer-aided Design (CAD) application is  used to select – in this case – a corrosion inhibitor for  a potentially-new cutting uid. Such computer-based  techniques  have  brought  about  a  means  of  develop - ing cutting uid products, using the CAD to not only  ‘screen-out’ formulations which do not t the present  machining requirements, but can also uncover previ - ously  unsuspected properties – resulting  form syner - Figure 201. Schematic representation of emulsion varieties of cutting uids. [Courtesy of Cimcool].  Chapter  . oil-based cutting uid and an ‘oil-in-water’ emulsifying molecule. [Courtesy of Cimcool] . Cutting Fluids  Figure 199. The principle of polar and passivating corrosion protection and the minimum. Fluids A large proportion of cutting uids used for machin- ing operations are still of the aqueous-based types (Fig.  197), as they combine the excellent heat-absorbing ca - pacity of water, with the lubricating power of chemical  substances. Such cutting uids oer excellent cooling,  lubricating and wetting properties. Machine tools re - quire protection from the lubricant ingress and should  be compatible with lubricating and hydraulic systems  on . properties of  the cutting uid is caused by the hardness of the water.  Water’s hardness depends on the concentration of ele - ments 12  such as: calcium, magnesium and other heavy  metals like iron and manganese. Hard water may cause  a soapy deposit, which will eventually block lters, or  destabilise  the  emulsion and

Ngày đăng: 21/06/2014, 22:20

TỪ KHÓA LIÊN QUAN