Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 99 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
99
Dung lượng
551,17 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: MỘT SỐ KẾT QUẢ VỀ BÀI TOÁN CỰC TRỊ LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Bài toán truyền nhiệt vấn đề tiêu biểu " Lý thuyết phương trình đạo hàm riêng " Ý nghĩa toán truyền nhiệt thể việc miêu tả tiêu tán nhiệt, nhiều trình tiêu tán khác, tiêu tán hạt lan truyền phản ứng tế bào thần kinh Với tính chất quan trọng trên, toán thu hút quan tâm đặc biệt nhà Toán học khoa học giới Kevorkian.J(2000), Lawrence C., Svesnhikop A.G., Bolgo-liubov A.N., Krapxop V.V(2004 ), Tikhonop A,N.,Samarxki A.A, Titchmars E.(2000), Glusko V.P(2002), Diakonop V(2001), 812 2 KHÔNG GIAN CÁC HÀM LIÊN TỤC Nhận xét Định lý Arzelà - Ascoli khơng cịn C0 (A) A ⊂ Rn khơng compact Ví dụ lấy C0b (R) không gian hàm liên tục bị chặn R, nghĩa 0 Cb (R) := f ∈ C (R) : sup |f | < ∞ R Khi dễ thấy (C0b (R), ∥.∥∞ ) không gian Banach Giả sử f : R → R hàm định nghĩa ( − |x| x ≤ f (x) = x > Giả sử h : R → R, (h = 1, 2, ) định nghĩa fh (x) := f (x + h) giả sử F := {fh : h ∈ N} Khi dễ thấy họ hàm F ⊂ C0b (R) bị chặn liên tục Tuy nhiên F không compact (C0b (R), ∥.∥∞ ) Thật vậy, ý ∃f (x) := lim fh (x) = 0, ∀x ∈ R ∥fh − f ∥∞ = 1, ∀h h→∞ Điều có nghĩa dãy hội tụ (fh )h (C0b (R), ∥.∥∞ ) không chấp nhận Tính tách (C0b (R), ∥.∥∞ ) Định nghĩa Giả sử (X, τ ) khơng gian topo Khi (X, τ ) gọi thỏa mãn tiên đề hai tính đếm có sở đếm cho topo τ Định lý Giả sử (X, d) không gian metric Khi (i) (X, d) tách thỏa tiên đề thứ hai tính đếm (ii) Mỗi không gian (X, d) tách (X, d) tách (iii) Giả sử (Y, ϱ) không gian metric khác T : (X, d) → (Y, ϱ) đồng cấu Khi (X, d) tách (Y, ϱ) tách Nhận xét Phải nhấn mạnh mục quan trọng giải tích cho mục xấp xỉ Nghĩ số hợp lý chứng minh định lý Ascoli Cuối phải nhớ lại tiêu chuẩn để kiểm tra không gian topo không gian tách Mệnh đề Giả sử (X, τ ) không gian topo Giả sử tồn họ {Ui : i ∈ I} thỏa mãn (i) Ui tập mở với i ∈ I ; (ii) Ui ∪ Uj = ∅ i ̸= j (iii) I không đêm Khi (X, τ ) khơng tách Bài tập Giả sử l∞ := {x ∈ RN : sup |x(n)| < ∞} n∈N trang bị chuẩn ∥x∥l∞ := sup |x(n)| n∈N Hãy (l∞ , ∥.∥l∞ ) không gian Banach không tách Gợi ý: Giả sử I = 2N := {x : N → {0, 1}} ⊂ l∞ Ux = Bl∞ x, n := y ∈ l ∞ : ∥y − x∥l∞ < o x ∈ I Khi ta xét họ {Ux : x ∈ I} sử dụng mệnh đề ?? Định lý Giả sử K ⊂ Rn tập compact Khi (C0 (K), ∥.∥∞ ) tách Chúng ta chứng minh cho trường hợp n = 1, K = [a, b] Trước ta cần phải nêu kết xấp xỉ quan trọng tốn giải tích Định lý (Định lý xấp xỉ Weierstrass) Giả sử f ∈ C([a, b]) Khi tồn dãy hàm đa thức ph : R → R, (h = 1, 2, ) với hệ số thực, nghĩa ph ∈ R[x], thỏa mãn ph → f [a, b] Nhận xét Bởi đa thức hàm đơn giản nhất, máy tính trực tiếp đánh giá đa thức Định lý có ý nghĩa lý thuyết thực tiễn Đặc biệt nội suy đa thức Chứng minh định lý ?? Chúng ta cần kết n = K = [a, b] Giả sử D tập hợp hàm đa thức với hệ số hữu tỷ, nghĩa là, D := Q[x] Ta biết D đếm Chứng minh D trù mật C0 ([a, b]), ∥.∥∞ ) tức ∀f ∈ C0 ([a, b]), ∀ϵ > 0, ∃q ∈ D cho ∥f − q∥∞ ≤ ϵ Từ định lý xấp xỉ Weierstrass, với ϵ > 0, tồn p ∈ R[x], nghĩa là, p(x) = αm xm + · · · + α1 x1 + α0 , với αi ∈ R, i = 0, 1, , m thỏa mãn ∥f − p∥∞ < ϵ (1) Định nghĩa q(x) := βm xm + · · · + β1 x1 + β0 với βi ∈ Q ϵ |αi − βi | < Pm i=0 c i , i = 0, 1, , m, c := max{|a|, |b|} Khi |p(x) − q(x)| ≤ m X i=0 ϵ |αi − βi ||x|i ≤ , ∀x ∈ [a, b] Do đó, từ (??) (??) ta ∥f − q∥∞ ≤ ∥f − p∥∞ + ∥p − q∥∞ ≤ ϵ ϵ + = ϵ 2 (2) Độ giao hoán tương đối mở rộng nhóm Trong mục ta nghiên cứu độ giao hốn tương đối mở rộng nhóm Mệnh đề Cho H1 H2 hai nhóm G cho H1 ⩽ H2 Khi Pr(H1 , H2 ) ⩾ Pr(H1 , G) ⩾ Pr(H2 , G) Chứng minh Theo Bổ đề 8, với x ∈ G ta có |H1 : CH1 (x)| ⩽ |H2 : CH2 (x)| ⩽ |G : CG (x)| Từ suy |C (x)| |C (x)| |CH1 (x)| ⩾ H2 ⩾ G với x ∈ G |H1 | |H2 | |G| Theo Mệnh đề 52 ta có Pr(H1 , H2 ) = X X |CH2 (x)| |CH2 (x)| = |H1 ||H2 | |H1 | |H2 | x∈H1 ⩾ x∈H1 X X |CG (x)| = |CG (x)| = Pr(H1 , G) |H1 | |G| |H1 ||G| x∈H1 x∈H1 Theo Mệnh đề 52 ta có X Pr(H1 , G) = ⩾ |H1 ||G| |CH1 (y)| = y∈G X |CH2 (y)| |G| y∈G |H2 | X |CH1 (y)| |G| |H1 | y∈G = X |CH2 (y)| = Pr(H2 , G) |H2 ||G| y∈H2 Vậy ta có điều phải chứng minh Mệnh đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) Hơn nữa, dấu đẳng thức xảy N ∩ [H, G] = Để chứng minh Mệnh đề 28 ta cần bổ đề sau Bổ đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi CH (x)N ⩽ CH/N (xN ) N với x ∈ G Hơn nữa, đẳng thức xảy N ∩ [H, G] = Chứng minh Lấy x ∈ G Giả sử y ∈ CH (x) Khi yN ∈ CH (x)N , N ta có xN yN = (xy)N = (yx)N = yN xN Do yN ∈ CH/N (xN ) Từ suy CH (x)N ⩽ CH/N (xN ) N Giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Thật vậy, lấy x ∈ G Giả sử yN ∈ CH/N (xN ) với y ∈ H Khi xN yN = yN xN , (xy)N = (yx)N Từ suy y −1 x−1 yx = (xy)−1 (yx) ∈ N Điều chứng tỏ y −1 x−1 yx ∈ N ∩[H, G] Do theo giả thiết, ta có y −1 x−1 yx = hay xy = yx Từ suy y ∈ CH (x) Do yN ∈ CH (x)N N Điều chứng tỏ CH/N (xN ) ⩽ CH (x)N N Vậy ta có điều phải chứng minh Bây ta chứng minh Mệnh đề 28 Chứng minh Từ Mệnh đề 52 ta có X X X |CH (y)| |H||G| Pr(H, G) = |CH (y)| = y∈G = X X S∈G/N y∈S = S∈G/N y∈S |CN (y)| X X |CH (y)N | |CH (y)| |CN (y)| = |CN (y)| |N ∩ CH (y)| |N | X X 49 Thật |uα (x) − uβ (x) − uα (y) + uβ (y)| Lip(uα − uβ ) = sup : x, y ∈ (a, b), x ̸= y |x − y| |uα (α) − uβ (α) − uα (β) + uβ (β)| |α − β| =2 = |α − β| |α − β| ≥ Vì họ Uα := {f ∈ Lip((a, b)) : ∥f − uα ∥Lip < ∀α ∈ I} Ta điều mong muốn Bước 2: Giả sử Ω tập mở bị chặn Từ Ω mở, tồn hình cầu mở (a1 , b1 ) × · · · × (an , bn ) ⊂ Ω Cho {fα : α ∈ (a1 , b1 )} ⊂ Lip(Ω) họ hàm định nghĩa fα (x) := uα (x1 ) x = (x1 , x2 , , xn ) ∈ Ω, α ∈ I := (a1 , b1 ), uα hàm biến theo định nghĩa bước Theo (??) ta được, α ̸= β Lip(fα − fβ , Ω) ≥ Lip(uα − uβ , (a1 , b1 )) ≥ Vì vậy, họ Uα := {f ∈ Lip(Ω) : ∥f − fα ∥Lip < 1} ∀α ∈ I Ta điều cần chứng minh Ta xem xét lớp Lip(Ω) hàm liên tục Lipschitz f : Ω → R mà định nghĩa thỏa mãn ước lượng |f (x) − f (y)| < C|x − y| ∀x, y ∈ Ω (L) Với C > Giống hàm thỏa mãn (L), hàm thỏa mãn tính chất (H) quan trọng, hàm thỏa mãn tính chất (H) gọi hàm thỏa mãn điều kiện Holder với số mũ α |f (x) − f (y)| ≤ C|x − y|α với số C, α > ∀x, y ∈ Ω (H) 50 Bài tập Cho Ω ⊂ Rn tập mở liên thông giả sử (H) với C > α > Khi f ≡ const Do điều kiện Holder khơng cịn ý nghĩa cho hàm với số mũ lớn tập mở liên thông Định nghĩa 16 Cho A ⊂ Rn , hàm f : A → R gọi liên tục Holder với mũ α > thỏa mãn (H) với sô C > 13 Độ giao hốn tương đối mở rộng nhóm Trong mục ta nghiên cứu độ giao hoán tương đối mở rộng nhóm Mệnh đề 24 Cho H1 H2 hai nhóm G cho H1 ⩽ H2 Khi Pr(H1 , H2 ) ⩾ Pr(H1 , G) ⩾ Pr(H2 , G) Chứng minh Theo Bổ đề 8, với x ∈ G ta có |H1 : CH1 (x)| ⩽ |H2 : CH2 (x)| ⩽ |G : CG (x)| Từ suy |C (x)| |C (x)| |CH1 (x)| ⩾ H2 ⩾ G với x ∈ G |H1 | |H2 | |G| Theo Mệnh đề 52 ta có Pr(H1 , H2 ) = X 1 X |CH2 (x)| |CH2 (x)| = |H1 ||H2 | |H1 | |H2 | x∈H1 ⩾ x∈H1 X X |CG (x)| = |CG (x)| = Pr(H1 , G) |H1 | |G| |H1 ||G| x∈H1 x∈H1 Theo Mệnh đề 52 ta có X Pr(H1 , G) = ⩾ |H1 ||G| |CH1 (y)| = y∈G X |CH2 (y)| |G| y∈G |H2 | Vậy ta có điều phải chứng minh X |CH1 (y)| |G| |H1 | y∈G = X |CH2 (y)| = Pr(H2 , G) |H2 ||G| y∈H2 51 Mệnh đề 25 Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) Hơn nữa, dấu đẳng thức xảy N ∩ [H, G] = Để chứng minh Mệnh đề 28 ta cần bổ đề sau Bổ đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi CH (x)N ⩽ CH/N (xN ) N với x ∈ G Hơn nữa, đẳng thức xảy N ∩ [H, G] = Chứng minh Lấy x ∈ G Giả sử y ∈ CH (x) Khi yN ∈ CH (x)N , N ta có xN yN = (xy)N = (yx)N = yN xN Do yN ∈ CH/N (xN ) Từ suy CH (x)N ⩽ CH/N (xN ) N Giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Thật vậy, lấy x ∈ G Giả sử yN ∈ CH/N (xN ) với y ∈ H Khi xN yN = yN xN , (xy)N = (yx)N Từ suy y −1 x−1 yx = (xy)−1 (yx) ∈ N Điều chứng tỏ y −1 x−1 yx ∈ N ∩[H, G] Do theo giả thiết, ta có y −1 x−1 yx = hay xy = yx Từ suy y ∈ CH (x) Do yN ∈ Điều chứng tỏ CH/N (xN ) ⩽ CH (x)N N Vậy ta có điều phải chứng minh Bây ta chứng minh Mệnh đề 28 CH (x)N N 52 Chứng minh Từ Mệnh đề 52 ta có X X X |CH (y)| |H||G| Pr(H, G) = |CH (y)| = y∈G = S∈G/N y∈S X X S∈G/N y∈S = |CN (y)| |CN (y)| X X |CH (y)N | |CH (y)| |CN (y)| = |CN (y)| |N ∩ CH (y)| |N | S∈G/N y∈S X X CH (y)N N |CN (y)| S∈G/N y∈S Áp dụng Bổ đề từ suy X X X X |CH/N (S)| |CN (y)| |H||G| Pr(H, G) ⩽ |CH/N (yN )||CN (y)| = S∈G/N y∈S = X S∈G/N |CH/N (S)| S∈G/N X X |CS (x)| = x∈N |CH/N (S)| S∈G/N y∈S X |S ∩ CG (x)| x∈N Nếu S ∩ CG (x) ̸= ∅ tồn x0 ∈ S ∩ CG (x) S = N x0 Khi ta có S ∩ CG (x) = N x0 ∩ CG (x)x0 = (N ∩ CG (x))x0 = CN (x)x0 Từ suy |S ∩ CG (x)| = |CN (x)x0 | = |CN (x)| Nếu S ∩ CG (x) = ∅ rõ ràng = |S ∩ CG (x)| < |CN (x)| Do trường hợp ta có |S ∩ CG (x)| ⩽ |CN (x)| Từ suy X X X X |H||G| Pr(H, G) ⩽ |CH/N (S)| |S ∩ CG (x)| ⩽ |CH/N (S)| |CN (x)| S∈G/N x∈N S∈G/N x∈N = |H/N ||G/N | Pr(H/N, G/N )|N | Pr(N ) = |H||G| Pr(H/N, G/N ) Pr(N ) Do Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) Cuối cùng, giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Khi đó, theo Bổ đề ta có CH (y)N = CH/N (yN ) với y ∈ G N 53 Theo lập luận ta có |H||G| Pr(H, G) = X |CH/N (S)| X |S ∩ CG (x)| x∈N S∈G/N Vì N ◁ G [N, G] ⩽ N Do từ giả thiết suy [N, G] = N ∩ [N, G] ⩽ N ∩ [H, G] = 1, hay N ⩽ Z(G) Từ suy CG (x) ∩ S = G ∩ S ̸= ∅ với x ∈ N với S ∈ G/N Do |S ∩ CG (x)| = |CN (x)| với x ∈ N Từ suy xảy dấu đẳng thức Trong trường hợp đặc biệt, tích trực tiếp ta có kết sau Mệnh đề 26 Cho N H hai nhóm, N1 H1 tương ứng nhóm N H Khi Pr(N1 × H1 , N × H) = Pr(N1 , N ) Pr(H1 , H) Chứng minh Giả sử x = (x1 , x2 ) ∈ N1 × H1 Khi CN ×H (x) = {(a1 , a2 ) ∈ N × H | (x1 , x2 )(a1 , a2 ) = (a1 , a2 )(x1 , x2 )} = {(a1 , a2 ) ∈ N × H | (x1 a1 , x2 a2 ) = (a1 x1 , a2 x2 )} Do |CN ×H (x)| = |CN (x1 )||CH (x2 )| Từ suy X x∈N1 ×H1 |CN ×H (x)| = X x1 ∈N1 |CN (x1 )| X x2 ∈H1 |CH (x2 )| 54 Áp dụng Mệnh đề 52 ta có Pr(N1 × H1 , N × H) = |N1 × H1 ||N × H| X |CN ×H (x)| x∈N1 ×H1 = X X |CN (x1 )| |CH (x2 )| |N1 ||H1 ||N ||H| = |N1 ||N | x1 ∈N1 X |CN (x1 )| x1 ∈N1 x2 ∈H1 X |CH (x2 )| |H1 ||H| x2 ∈H1 = Pr(N1 , N ) Pr(H1 , H) Vây ta có điều phải chứng minh Đặc biệt, ta có kết sau Hệ 10 Cho H N hai nhóm Khi Pr(H, N × H) = Pr(H) Đối với tích nửa trực tiếp vấn đề tính độ giao hốn tương đối trở nên phức tạp nhiều Trong phần lại mục ta trường hợp đặc biệt Mệnh đề sau cho ta công thức tính độ giao hốn tương đối nhóm abel với tích nửa trực tiếp nhóm xiclíc cấp Mệnh đề 27 Cho A nhóm giao hốn, α tự đẳng cấu A cho α2 = idA C2 = ⟨u⟩ nhóm xiclíc cấp với u phần tử sinh Ký hiệu G = A×θ C2 tích nửa trực tiếp A nhóm xiclíc C2 = ⟨u⟩ với tác động θ : C2 → Aut(A) cho cơng thức θ(u) = α Khi Pr(A, G) = |Aα | + 2|A| Aα = {a ∈ A | α(a) = a} Chứng minh Giả sử x = (x1 , 1) ∈ A Khi ta có CG (x) = CA (x) ∪ CG\A (x) 55 Vì A nhóm giao hốn nên CA (x) = A Ta có CG\A (x) = {(a, u) ∈ G \ A | (x1 , 1)(a, u) = (a, u)(x1 , 1)} = {(a, u) ∈ G \ A | (x1 a, u) = (aθ(u)(x1 ), u)} = {(a, u) ∈ G \ A | (ax1 , u) = (aα(x1 ), u)} Ta xét hai trường hợp x1 sau Trường hợp 1: x1 ∈ Aα Khi aα(x1 ) = ax1 với a ∈ A Do |CG\A | = |A| Trường hợp 2: x1 ∈ A \ Aα Khi aα(x1 ) ̸= ax1 với a ∈ A Do CG\A = ∅, |CG\A | = Từ suy X X X X |CG (x)| = x∈A (|CA (x)| + |CG\A (x)|) = x∈A |CA (x)| + x∈A = |A|2 + X |CG\A (x)| + x∈Aα X |CG\A (x)| x∈A |CG\A (x)| x∈A\Aα = |A|2 + |A||Aα | + = |A|(|A| + |Aα |) Theo Mệnh đề 52 ta có Pr(A, G) = X |CG (x)| |A||G| x∈A = |A| |C2 | |A|(|A| + |Aα |) = |Aα | |A| + |Aα | = + 2|A| 2|A| Vậy ta có điều phải chứng minh 14 Khơng gian hữu hạn chiều Định nghĩa 17 (i) Một không gian vector E trường số thực gọi hữu hạn chiều bao gồm hữu hạn vector độc lập tuyến tính (ii) Số lớn vector độc lập tuyến tính khơng gian vector hữu hạn chiều E gọi chiều ký hiệu dimR E Hệ B ⊂ E sinh dimR E vector độc lập tuyến tính gọi sở