1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn thi thpt 9 (759)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 152,93 KB

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số y = f (x) liên tục trên khoảng (a, b) Điều kiện[.]

TỐN PDF LATEX TRẮC NGHIỆM ƠN THI MƠN TỐN THPT (Đề thi có 10 trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim+ f (x) = f (b) B lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→a x→b x→b C lim− f (x) = f (a) lim− f (x) = f (b) D lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→a x→b x→b Câu [3-1224d] Tìm tham số thực m để phương trình x + log3 x + m = có nghiệm 1 1 B m ≤ C m > D m < A m ≥ 4 4 x−3 x−2 x−3 x−2 Câu [3-12212d] Số nghiệm phương trình − 2.2 − 3.3 + = A B Vô nghiệm C D log23 Câu [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung hai x−2 y−3 z+4 x+1 y−4 z−4 đường thẳng d : = = d0 : = = −5 −2 −1 x−2 y+2 z−3 x−2 y−2 z−3 A = = B = = 2 x y−2 z−3 x y z−1 C = = D = = −1 1 Câu Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (I) (II) C Cả ba mệnh đề Câu Xác định phần ảo số phức z = (2 + 3i)(2 − 3i) A B Không tồn C D (II) (III) D 13 Câu Trong không gian cho hai điểm A, B cố định độ dài AB = Biết tập hợp điểm M cho MA = 3MB mặt cầu Khi bán kính mặt cầu bằng? A B C D 2 !4x !2−x Câu Tập số x thỏa mãn ≤ " ! " ! # # 2 2 A ; +∞ B − ; +∞ C −∞; D −∞; 3 Câu Tập hợp điểm mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 số ảo A Hai đường phân giác y = x y = −x góc tọa độ B Đường phân giác góc phần tư thứ C Trục thực D Trục ảo Câu 10 [1] Đạo hàm làm số y = log x ln 10 A y0 = B y0 = x x C y0 = x ln 10 D 10 ln x Trang 1/10 Mã đề 1 Câu 11 Hàm số y = x + có giá trị cực đại x A −1 B C −2 D log(mx) Câu 12 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < C m ≤ D m < ∨ m = Câu 13 [2] Tổng nghiệm phương trình log4 (3.2 x − 1) = x − A B C D Câu 14 √ [4-1245d] Trong tất số phức z thỏa mãn hệ thức |z − + 3i| = Tìm √ |z − − i| A B C D 10 3a , hình chiếu vng Câu 15 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 x−1 y z+1 Câu 16 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình = = −1 mặt phẳng (P) : 2x − y + 2z − = Viết phương trình mặt phẳng (Q) chứa ∆ tạo với (P) góc nhỏ A 10x − 7y + 13z + = B 2x + y − z = C 2x − y + 2z − = D −x + 6y + 4z + = Câu 17 [2] Tập xác định hàm số y = (x − 1) A D = R \ {1} B D = R C D = (−∞; 1) D D = (1; +∞) Câu 18 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 19 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z B f (x)dx = f (x) Z C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 20 Khối đa diện loại {3; 4} có số mặt A B C 12 D 10 Câu 21 [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc mơn Tốn Mơn thi hình thức trắc nghiệm 50 câu, câu có phương án trả lời, có phương án Mỗi câu trả lời cộng 0, điểm, câu trả lời sai bị trừ 0, điểm Bạn An học mơn Tốn nên định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt điểm mơn Tốn C 40 (3)10 C 10 (3)40 C 20 (3)20 C 20 (3)30 A 50 50 B 50 50 C 50 50 D 50 50 4 4 Trang 2/10 Mã đề Câu 22 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B F(x) = x2 nguyên hàm hàm số f (x) = 2x √ C F(x) = x nguyên hàm hàm số f (x) = x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 23 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a a 8a 5a A B C D 9 9 Câu 24 [1] Tập xác định hàm số y = x−1 A D = (0; +∞) B D = R \ {0} C D = R \ {1} D D = R d = 30◦ , biết S BC tam giác Câu 25 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 26 13 16 Câu 26 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D Câu 27 [2-c] Giá trị lớn hàm số f (x) = e x −3x+3 đoạn [0; 2] A e5 B e C e3 D e2 Câu 28 Dãy số sau có giới hạn khác 0? sin n n+1 B A n n D √ n C n Câu 29 Tập xác định hàm số f (x) = −x3 + 3x2 − A [−1; 2) B (1; 2) C (−∞; +∞) x+1 Câu 30 Tính lim x→+∞ 4x + A B C 3 Câu 31 Gọi M, m giá trị lớn nhất, giá trị nhỏ hàm số y Giá trị biểu thức P = (m2 − 4M)2019 A e2016 B 22016 C x−3 Câu 32 [1] Tính lim bằng? x→3 x + A B C −∞ Câu 33 [2] Tổng nghiệm phương trình 6.4 x − 13.6 x + 6.9 x = A B C D [1; 2] = (x2 − 3)e x đoạn [0; 2] D D D +∞ D Câu 34 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B Cả ba câu sai C F(x) = G(x) khoảng (a; b) D G(x) = F(x) − C khoảng (a; b), với C số Câu 35 Tìm giá trị nhỏ hàm số y = (x2 − 2x + 3)2 − A −3 B Không tồn C −7 D −5 Trang 3/10 Mã đề tan x + m Câu 36 [2D1-3] Tìm giá trị thực tham số m để hàm số y = nghịch biến khoảng m tan x +  π 0; A [0; +∞) B (−∞; −1) ∪ (1; +∞) C (−∞; 0] ∪ (1; +∞) D (1; +∞) Câu 37 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = ey − B xy0 = −ey − C xy0 = −ey + D xy0 = ey + ! ! ! 4x 2016 Câu 38 [3] Cho hàm số f (x) = x Tính tổng T = f +f + ··· + f +2 2017 2017 2017 2016 D T = 1008 A T = 2016 B T = 2017 C T = 2017 ! x+1 Câu 39 [3] Cho hàm số f (x) = ln 2017 − ln Tính tổng S = f (1) + f (2) + · · · + f (2017) x 2017 2016 4035 A B C D 2017 2018 2017 2018 Câu 40 Hình hình sau khơng khối đa diện? A Hình tam giác B Hình chóp C Hình lập phương D Hình lăng trụ Câu 41 [2] Đạo hàm hàm số y = x ln x A y0 = + ln x B y0 = x + ln x C y0 = ln x − D y0 = − ln x Câu 42 [1] Cho a số thực dương tùy ý khác Mệnh đề đúng? 1 A log2 a = loga B log2 a = C log2 a = − loga D log2 a = log2 a loga Câu 43 Hình hộp chữ nhật có ba kích thước khác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 44 [3-1123d] Ba bạn A, B, C, bạn viết ngẫu nhiên lên bảng số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số viết có tổng chia hết cho 1728 23 1637 1079 A B C D 4913 68 4913 4913 ! 1 Câu 45 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B +∞ C D 2 Câu 46 [2-c] Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x + ln x đoạn [1; e] Giá trị T = M + m 2 A T = e + B T = + C T = e + D T = e + e e Câu 47 Phần thực phần ảo số phức z = −i + A Phần thực −1, phần ảo B Phần thực 4, phần ảo C Phần thực 4, phần ảo −1 D Phần thực −1, phần ảo −4 [ = 60◦ , S A ⊥ (ABCD) Câu 48 Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a góc BAD Biết khoảng cách từ A đến cạnh √ S C a Thể tích khối √ √chóp S ABCD 3 √ a a a A a3 B C D 12 Câu 49 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B F(x) = − cos x nguyên hàm hàm số f (x) = sin x Trang 4/10 Mã đề u0 (x) dx = log |u(x)| + C u(x) D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z C Câu 50 Khối đa diện loại {3; 3} có tên gọi gì? A Khối 12 mặt B Khối tứ diện C Khối lập phương D Khối bát diện Z x a a Câu 51 Cho I = dx = + b ln + c ln d, biết a, b, c, d ∈ Z phân số tối giản Giá √ d d 4+2 x+1 trị P = a + b + c + d bằng? A P = 28 B P = −2 C P = D P = 16 √ Câu 52 Xác định phần ảo số √ phức z = ( + 3i) √ A −7 B C D −6 Câu 53 Cho tứ diện ABCD tích 12 G trọng tâm tam giác BCD Tính thể tích V khối chóp A.GBC A V = B V = C V = D V = Câu 54 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 55 Hàm số y = A x = x2 − 3x + đạt cực đại x−2 B x = C x = D x = log(mx) Câu 56 [3-1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < C m < ∨ m = D m ≤ Câu 57 [3-12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D x Câu 58 [2-c] Cho hàm số f (x) = x với x ∈ R hai số a, b thỏa mãn a + b = Tính f (a) + f (b) +3 C −1 D A B − 2n Câu 59 [1] Tính lim bằng? 3n + 2 A − B C D 3 Câu 60 [4-1244d] Trong tất số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − + 5i| = |z − i| Biết rằng, |z + − i| nhỏ Tính P = ab 13 23 A B − C D − 25 16 100 100 Câu 61 Phát biểu sau sai? A lim un = c (Với un = c số) C lim = với k > nk B lim √ = n D lim qn = với |q| > Trang 5/10 Mã đề Câu 62 Tìm m để hàm số y = x3 − 3mx2 + 3m2 có điểm cực trị A m > B m < C m , D m = Câu 63 [1-c] Giá trị biểu thức log2 36 − log2 144 A −4 B C D −2 Câu 64 Khối đa diện loại {3; 3} có số cạnh A B D C Câu 65 Tìm m để hàm số y = x4 − 2(m + 1)x2 − có cực trị A m > B m ≥ C m > −1 D m > Câu 66 Khối đa diện loại {4; 3} có số đỉnh A B D 10 C Câu 67 [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn lẫn lãi) gần với số tiền đây, khoảng thời gian người khơng rút tiền lãi suất không thay đổi? A 102.016.000 B 102.423.000 C 102.016.000 D 102.424.000 ! − 12x = có nghiệm thực? Câu 68 [2] Phương trình log x log2 12x − A B C Vô nghiệm D Câu 69 Cho z là√nghiệm phương trình x2 + x + = Tính P =√z4 + 2z3 − z −1 − i −1 + i B P = C P = D P = 2i A P = 2 Câu 70 Bát diện thuộc loại A {4; 3} B {5; 3} C {3; 4} D {3; 3} Câu 71 Khối đa diện loại {3; 4} có tên gọi gì? A Khối tứ diện B Khối lập phương Câu 72 [2] Tổng nghiệm phương trình A B C Khối 12 mặt D Khối bát diện x2 −3x+8 = 92x−1 C D Câu 73 Biểu diễn hình học số phức z = + 8i điểm điểm sau đây? A A(−4; 8) B A(4; −8) C A(−4; −8)( D A(4; 8) Câu 74 [1] Đạo hàm hàm số y = x A y0 = B y0 = x ln x C y0 = x ln ln Câu 75 [1-c] Giá trị biểu thức log0,1 102,4 A −7, B 72 C 0, D y0 = x ln x D 7, Câu 76 Khi chiều cao hình chóp tăng lên n lần cạnh đáy giảm n lần thể tích A Tăng lên (n − 1) lần B Tăng lên n lần C Giảm n lần D Không thay đổi + + ··· + n Câu 77 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 B lim un = A lim un = C Dãy số un giới hạn n → +∞ D lim un = Câu 78 [4] Cho lăng trụ ABC.A0 B0C có chiều cao đáy tam giác cạnh Gọi M, N P tâm mặt bên ABB0 A0 , ACC A0 , BCC B0 Thể tích khối đa diện lồi có đỉnh A, B, C, M, √ N, P √ √ √ 14 20 A B C D 3 Trang 6/10 Mã đề n−1 Câu 79 Tính lim n +2 A B C D √ Câu 80 [2] Thiết diện qua trục hình nón trịn xoay tam giác có diện tích a2 Thể tích khối nón √ √ √ √ cho πa3 πa3 πa3 πa3 B V = C V = D V = A V = 6 Câu 81 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a A B C D a 2 Câu 82 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 83 [2-c] Giá trị lớn hàm số y = ln(x2 + x + 2) đoạn [1; 3] A ln 14 B ln 10 C ln D ln 12 Câu 84 Phép đối xứng qua mp(P) biến đường thẳng d thành A d nằm P B d song song với (P) C d ⊥ P D d nằm P d ⊥ P Câu 85 Cho hàm số y = x3 − 3x2 + Tích giá trị cực đại giá trị cực tiểu A B −6 C D −3 Câu 86 [2] Tổng nghiệm phương trình x −4x+5 = A B C D Câu 87 [3-1122h] Cho hình lăng trụ ABC.A0 B0C có đáy tam giác cạnh a Hình chiếu vng góc A0 lên √ mặt phẳng (ABC) trung với tâm tam giác ABC Biết khoảng cách đường thẳng AA a BC Khi thể tích khối lăng trụ √ √ √ √ a3 a3 a3 a3 A B C D 36 12 24 Câu 88 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a , lim = ±∞ lim = !vn un C Nếu lim un = a > lim = lim = +∞ ! un D Nếu lim un = a < lim = > với n lim = −∞ Z Câu 89 Cho hàm số f (x) liên tục đoạn [0; 1] thỏa mãn f (x) = 6x f (x )− √ Tính f (x)dx 3x + A −1 B C D Trang 7/10 Mã đề Câu 90 [1] Biết log6 A √ a = log6 a B 36 C D 108 [ = 60◦ , S O Câu 91 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ BC) √ √ Khoảng cách từ O đến (S √ a 57 2a 57 a 57 A a 57 C D B 17 19 19 Câu 92 Khi tăng ba kích thước khối hộp chữ nhật lên n lần thể thích tăng lên A n2 lần B n3 lần C n lần D 3n3 lần Câu 93 Cho hình chóp S ABCD có √ đáy ABCD hình chữ nhật AD = 2a, AB = a Gọi H trung điểm AD, biết S H ⊥ (ABCD), S A = a Thể tích khối chóp √ S ABCD √ 3 2a 4a 2a 4a3 A B C D 3 3 Câu 94 [2] Biết M(0; 2), N(2; −2) điểm cực trị đồ thị hàm số y = ax3 + bx2 + cx + d Tính giá trị hàm số x = −2 A y(−2) = −18 B y(−2) = 22 C y(−2) = D y(−2) = Câu 95 Giá trị lim (3x2 − 2x + 1) x→1 A B C +∞ D Câu 96 Cho hàm số y = x3 − 3x2 − Mệnh đề sau đúng? A Hàm số nghịch biến khoảng (0; 1) B Hàm số nghịch biến khoảng (1; +∞) C Hàm số đồng biến khoảng (1; 2) D Hàm số nghịch biến khoảng (−∞; 0) Câu 97 Hàm số sau khơng có cực trị x−2 A y = x + B y = C y = x4 − 2x + x 2x + Câu 98 Điểm cực đại đồ thị hàm số y = 2x3 − 3x2 − A (0; −2) B (1; −3) C (2; 2) D y = x3 − 3x D (−1; −7) d = 120◦ Câu 99 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B 3a C 2a D Câu 100 [1233d-2] MệnhZđề sau Z Z sai? [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R A Z Câu 101 Tính lim x→3 A x2 − x−3 B C +∞ D −3 Câu 102 Khối đa diện có số đỉnh, cạnh, mặt nhất? A Khối bát diện B Khối lăng trụ tam giác C Khối lập phương D Khối tứ diện Câu 103 Khối đa diện sau có mặt khơng phải tam giác đều? A Thập nhị diện B Bát diện C Tứ diện D Nhị thập diện Trang 8/10 Mã đề x−3 x−2 x−1 x + + + y = |x + 2| − x − m (m tham x−2 x−1 x x+1 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A (−∞; 2) B (2; +∞) C [2; +∞) D (−∞; 2] Câu 104 [4-1213d] Cho hai hàm số y = Câu 105 Hình lập phương có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 106 Cho hình chóp S ABC có đáy ABC tam giác cạnh a, biết S A ⊥ (ABC) (S BC) hợp với đáy (ABC) góc 60◦ Thể√tích khối chóp S ABC √ √ a3 a3 a3 a3 B C D A 12 Câu 107 [1] Phương trình log3 (1 − x) = có nghiệm A x = B x = −2 C x = −8 D x = −5 Câu 108 Tập số x thỏa mãn log0,4 (x − 4) + ≥ A (−∞; 6, 5) B (4; +∞) C [6, 5; +∞) D (4; 6, 5] Câu 109 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a A B a C D 2 Câu 110 √ [4-1246d] Trong tất √ số phức z thỏa mãn |z − i| = Tìm giá trị lớn |z| A B C D Câu 111 Cho z1 , z2 hai nghiệm phương trình z2 + 3z + = Tính P = z1 z2 (z1 + z2 ) A P = −21 B P = 21 C P = 10 D P = −10 x+1 Câu 112 Tính lim x→−∞ 6x − 1 C D A B Câu 113 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết khơng rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu số tiền lãi A 20, 128 triệu đồng B 50, triệu đồng C 70, 128 triệu đồng D 3, triệu đồng Câu 114 [4-1242d] Trong tất số phức z thỏa mãn |z − + 2i| = |z + − 4i| Tìm giá trị nhỏ mơđun z √ √ √ √ 13 A 26 B C D 13 13 Câu 115 [2-c] Giá trị nhỏ hàm số y = (x2 − 2)e2x đoạn [−1; 2] A −e2 B 2e2 C 2e4 D −2e2 Câu 116 Cho số phức z thỏa mãn |z + 3| = |z − 2i| = |z −√2 − 2i| Tính |z| √ A |z| = 10 B |z| = 17 C |z| = 17 D |z| = 10 Câu 117 Tứ diện có mặt phẳng đối xứng? A mặt B 10 mặt C mặt D mặt √ Câu 118 Cho chóp S ABCD có đáy ABCD hình vng cạnh a Biết S A ⊥ (ABCD) S A = a Thể tích khối chóp S ABCD √ √ √ a3 a3 a3 3 A a B C D 12 Trang 9/10 Mã đề !2x−1 !2−x 3 Câu 119 Tập số x thỏa mãn ≤ 5 A (+∞; −∞) B (−∞; 1] C [3; +∞) log7 16 Câu 120 [1-c] Giá trị biểu thức 15 log7 15 − log7 30 A −2 B C −4 D [1; +∞) D Câu 121 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B D √ A √ C √ 2 2 2 a +b a +b a +b a + b2 Câu 122 Hình chóp tứ giác có mặt phẳng đối xứng? A Bốn mặt B Ba mặt C Một mặt D Hai mặt Câu 123 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m < C m > D m ≥ 4 4 Câu 124 [2-c] Giá trị lớn hàm số y = x(2 − ln x) đoạn [2; 3] A −2 + ln B − ln C e D Câu 125 [1] Cho a > 0, a , Giá trị biểu thức log a1 a2 1 B −2 C A − 2 Câu 126 Khối đa diện loại {5; 3} có số đỉnh A 12 B 20 C 30 2n + Câu 127 Tính giới hạn lim 3n + 2 B C A 2 D D D Câu 128 [2-c] Giá trị lớn hàm số y = xe−2x đoạn [1; 2] 1 A B √ C e 2e e Câu 129 Dãy!số có giới hạn 0? n −2 A un = B un = n2 − 4n !n C un = D e2 n3 − 3n D un = n+1 Câu 130 [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn tháng, lãi suất 2% quý Sau tháng, người gửi thêm 100 triệu đồng với kỳ hạn lãi suất trước Tổng số tiền người nhận sau năm gửi tiền vào ngân hàng gần kết sau đây? Biết suốt thời gian gửi tiền lãi suất ngân hàng khơng thay đổi người khơng rút tiền A 212 triệu B 220 triệu C 216 triệu D 210 triệu - - - - - - - - - - HẾT- - - - - - - - - - Trang 10/10 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D B C B A B A D B 10 13 A 14 15 D 12 C 11 C C B 16 A 17 D 18 B 19 D 20 B 21 C 22 23 C 24 D 25 C 26 D 27 A C 28 A D 29 C 30 31 C 32 33 C 34 D 36 D 37 A 38 D 39 A 40 A 41 A 42 35 B 43 C 45 D B D 44 C 46 C 47 C 48 B 49 C 50 B 51 C 52 B 53 A 55 B 54 C 56 C 57 A 58 A 59 A 60 61 D 62 63 D 64 65 67 D C B 66 A C D 68 B 69 70 B C 71 D 72 A 73 D 74 C 75 A 76 C 77 A 78 B 79 D 80 D 81 D 82 D 84 D 83 A D 85 87 86 A B 88 89 C 90 A 91 C 92 93 B D 96 A B 98 A D 99 101 100 B D 102 B 103 A 105 B 94 A 95 97 C B 104 C 106 C 108 D 109 A 110 D 111 A 112 113 A 114 115 A 116 D D C 107 117 D 118 119 D 120 121 A 122 A 123 A 124 125 127 126 B 128 C 129 A 130 A C B C C B D

Ngày đăng: 13/04/2023, 21:14

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN