1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập môn toán có đáp án lớp 12 (224)

10 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 0,97 MB

Nội dung

ĐỀ MẪU CĨ ĐÁP ÁN ƠN TẬP KIẾN THỨC TỐN 12 Thời gian làm bài: 40 phút (Không kể thời gian giao đề) - Họ tên thí sinh: Số báo danh: Mã Đề: 012 Câu Tập hợp gồm tất phần tử thuộc tập hợp A thuộc tập hợp B gọi A phần bù hai tập hợp A B B hợp hai tập A B C hiệu hai tập hợp A B Đáp án đúng: B D giao hai tập A B  ABCD  Câu Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, SA vng góc với mặt phẳng SA a Thể tích khối chóp S ABCD a3 A Đáp án đúng: A a3 B 12 a3 D C a 2 Câu Cho mặt cầu ( S ) : x  y  z  x  z  0 Tìm tọa độ tâm I bán kính R A I ( 1;0;3), R  B I ( 1;0;3), R  C I (1;0;  3), R  Đáp án đúng: D Câu Cho hàm số có đạo hàm liên tục đoạn , A D I (1;0;  3), R  Biết Tính tích phân B C Đáp án đúng: D D Giải thích chi tiết: Tính Đặt , Theo đề ta có Mặt khác ta lại có Do nên Ta có SA   ABC  Câu Cho hình chóp S ABC có tam giác ABC vng A , AB 2a ; AC a ; SA 3a ; Thể tích hình chóp 3 3 A V 3a B V 2a C V 6a D V a Đáp án đúng: D Giải thích chi tiết: Cho hình chóp S ABC có tam giác ABC vng A , AB 2a ; AC a ; SA 3a ; SA   ABC  Thể tích hình chóp 3 3 A V 2a B V 6a C V a D V 3a Lời giải 1 1 V  AB AB.SA  2a.a.3a a 3 Thể tích hình chóp  P  : x  y  z  0  Q  : x  y  0 Trên  P  có Câu Trong khơng gian Oxyz , cho hai mặt phẳng  Q  Biết tam giác ABC có diện tích tam giác ABC ; Gọi A , B, C  hình chiếu A , B , C , tính diện tích tam giác ABC  A Đáp án đúng: D B C D 2  P  : x  y  z  0  Q  : x  y  0 Giải thích chi tiết: Trong khơng gian Oxyz , cho hai mặt phẳng  P  có tam giác ABC ; Gọi A, B, C  hình chiếu A , B , C  Q  Biết tam giác Trên ABC có diện tích , tính diện tích tam giác ABC  A B Lời giải C D 2  cos    P   Q  Gọi  góc hai mặt phẳng S ABC  S ABC cos  4 2 2 Ta có: 2.1    1  2.0 2 22    1  22 12    1  02  Câu Cho hình phẳng giới hạn đường y 1  x , Ox, x = 0, x = quay xung quanh trục Ox Thể tích khối tròn xoay tạo thành bằng: 68 28 28 68   2  3 A B C D Đáp án đúng: A Giải thích chi tiết: Cho hình phẳng giới hạn đường y 1  x , Ox, x = 0, x = quay xung quanh trục Ox Thể tích khối tròn xoay tạo thành bằng: 28 68 28 68 2    3 A B C D Hướng dẫn giải V   (1  x)2dx  Theo cơng thức ta tích khối trịn xoay cần tính là: VẬN DỤNG log x  125 x  log 225 x 1 Câu Tích nghiệm phương trình A 25 B 630 1-D 11 - A 2-B 12 - C 3-B 13 - C 4-C 14 - B 5-B 15 - C 6-B 16 - A 7-B 17 - B 68 8-D 18 - D 9-D 19 - C 10 - A C 125 630 D 625 Đáp án đúng: C x Câu Tập nghiệm bất phương trình  log 5; ;  A  B  log5 2; ;   ;log  C Đáp án đúng: C D   ;log5  t  6t Câu 10 Một chất điểm chuyển động có phương trình với thời gian t tính giây (s) quãng đường S tính mét (m) Trong thời gian giây kể từ bắt đầu chuyển động, vận tốc lớn chất điểm đạt 325 m / s A 36m / s B 288m / s C D 35m / s Đáp án đúng: D Câu 11 Gọi S tập hợp số tự nhiên có chữ số Chọn ngẫu nhiên số từ S , tính xác suất để chữ số số đơi khác phải có mặt chữ số S (t )  189 7 A 1250 B 150 C 375 D 125 Đáp án đúng: B Giải thích chi tiết: [ Mức độ 3] Gọi S tập hợp số tự nhiên có chữ số Chọn ngẫu nhiên số từ S , tính xác suất để chữ số số đơi khác phải có mặt chữ số 7 189 A 150 B 375 C 1250 D 125 Lời giải  0;1; 2;3; 4;5;6;7;8;9 Số tự nhiên có chữ số lập từ số Ta có: n() 9.10 Gọi A biến cố “ số có chữ số đơi khác phải có mặt chữ số ” a a a a a a ,(a 0) Gọi số cần tìm có dạng a 1 + Trường hợp 1: Số cách chọn vị trí cho số cách A4 Số cách chọn chữ số lại cách A4 8400 Trường hợp ta có: a 1 + Trường hợp 2: a1 có cách chọn ( trừ số 1) Số cách chọn vị trí cho hai chữ số 5.4 cách A3 Số cách chọn chữ số lại cách A73 5.4 33600 Trường hợp ta có: Suy n( A) 8400  33600 42000 n( A) 42000   n() 9.10 150 Vậy xác suất biến cố A là:   AB  AC  Câu 12 Cho tam giác ABC cạnh a Khi P ( A)  a B A a Đáp án đúng: D C 2a D a A  1;1;   B  0;1;   Câu 13 Trong không gian với hệ tọa độ Oxyz , cho hai điểm Độ dài đoạn thẳng AB A 37 Đáp án đúng: D B C 37 D A  1;1;   B  0;1;   Giải thích chi tiết: Trong không gian với hệ tọa độ Oxyz , cho hai điểm Độ dài đoạn thẳng AB A 37 B C D 37 Lời giải  AB  AB   1;0;   Ta có: nên 2  02     Câu 14 Cho hình chóp tứ giác S ABCD có độ dài cạnh bên cạnh đáy a Khoảng cách  SBC  đường thẳng AD mặt phẳng   1 a a 2a a h h h A B C D Đáp án đúng: C Câu 15 Cho hình trụ có bán kính đáy r 3 chiều cao h 4 Diện tích xung quanh hình trụ cho A 24 B 42 C 12 D 36 Đáp án đúng: A S 2 rh 24 Giải thích chi tiết: Diện tích xung quanh hình trụ cho xq Câu 16 Thể tích khối trịn xoay thu quay quanh trục Ox hình phẳng giới hạn đồ thị hàm số 3x 1 y x  trục hoành đường thẳng x 1 h A   3ln   B 3 ln   3ln  1 C 3ln  D Đáp án đúng: A Giải thích chi tiết: Thể tích khối trịn xoay thu quay quanh trục Ox hình phẳng giới hạn đồ thị 3x 1 y x  trục hoành đường thẳng x 1 hàm số A 3 ln B Lời giải   3ln     3ln  1 C 3ln  D Ta có phương trình hồnh độ giao điểm: 3x 1 0  x  0  x  x 1 Suy thể tích khối trịn xoay cần tính I 3x  1  x  1  Xét tích phân dx      x  1   x 1 2  f  x dx  V    3x 1  x  1 dx    dx dx    2 x   x          3ln x    3ln   3ln  3.ln  x 1    V   3ln   Vậy Câu 17 Hình khơng phải hình đa diện? A C Đáp án đúng: A B D y 3x  x Câu 18 Tìm phương trình tất tiệm cận đồ thị hàm số: A x  y 3 B x 3 y 2 y  C x 2 D x 2 y 3 Đáp án đúng: D Giải thích chi tiết: Ta có x(3  ) 3x  x 3  y 3 lim  lim x   x  x   x(1  ) x tiệm cận ngang đồ thị hàm số 3x    x 2 x x  tiệm cận đứng đồ thị hàm số Câu 19 lim Cho hàm số  1;3 bằng: A Tổng giá trị lớn giá trị nhỏ hàm số cho đoạn B C Đáp án đúng: D D 98 100 S C100  C100  C100   C100  C100 Câu 20 Tính tổng 50 A Đáp án đúng: B 50 B  Giải thích chi tiết: Xét khai triển Thay x i ta được: 1 i 100 25 C 1 x 100 25 D  100 100 C100  C100 x  C100 x   C100 x 2 3 4 100 100 C100  C100 i  C100 i  C100 i  C100 i   C100 i 2 C100  C100 i  C100 i  C100 i i  C100  i    C100100  i  50 2 100 C100  C100 i  C100   1  C100   1 i  C100   1   1   C100 50 100 C100  C100 i  C100  C100 i  C100   C100 100  C100  C100  C100   C100    C1001  C1003  C1005   C10099  i Mặt khác 1 i    i       C 50 Do 100 100 50 100 100 C 100 50 100 C 100  2i  50 250  i 100 100   C  C 25  100  250 100 C 99  C100   C100 i 100 100   C  C  C   C  99 C100  C100  C100   C100 Suy  50 Vậy S  Câu 21 Hình trụ có bán kính đáy a chiều cao a Khi diện tích tồn phần hình trụ   1 2 a    D A  a   a2  B  2 a 2 C Đáp án đúng: D Giải thích chi tiết: Ta có: Diện tích tồn phần hình trụ = Diện tích xung quanh + lần diện tích đáy   Stp 2 rh  2 r 2 a.a  2 a 2 a  Suy Câu 22 Cho hình nón có bán kính đáy r 3 , độ dài đường sinh l 5 Diện tích xung quanh hình nón cho A 45 B 30 C 10 D 15 Đáp án đúng: D Câu 23 Số phức nghiệm phương trình z  z  0 ? A  i B   i C  2i D  5i Đáp án đúng: C Giải thích chi tiết: Số phức nghiệm phương trình z  z  0 ? A   i B  5i C  i D  2i Lời giải Ta có z  z  0  z 1 2i y  x  x  Câu 24 Cho hàm số Mệnh đề sau đúng? B  0;1 A Điểm cực tiểu đồ thị hàm số  4 B  1;  C Điểm cực tiểu hàm số   B  0;1 B Điểm cực đại đồ thị hàm số  4 B  1;  D Điểm cực đại hàm số   Đáp án đúng: C Câu 25 Cho pt tổng lập phương nghiệm thực pt A Đáp án đúng: D B Giải thích chi tiết: Cho pt A Câu 26 B D tổng lập phương nghiệm thực pt C m Định tham số C D y x  (m  2) x  có cực đại cực tiểu để hàm số A m  C m  m2 m0 B D Đáp án đúng: B Câu 27 Tìm giá trị cực đại hàm số y x  12 x  A y CĐ =18 B y CĐ =−14 C y CĐ =− D y CĐ =2 Đáp án đúng: A Câu 28 Cho hình trụ có chiều cao bán kính Diện tích xung quanh hình trụ cho A 18 Đáp án đúng: C B 36 C 54 D 12 Câu 29 Cho hình trụ có bán kính đáy 13cm khoảng cách hai đáy 8cm Cắt khối trụ mặt phẳng song song với trục cách trục 5cm Tính diện tích S thiết diện tạo thành A 196 cm Đáp án đúng: C Câu 30 B 256 cm Tính khoảng cách hai mặt phẳng sau : A 2021 Đáp án đúng: C Câu 31 Giá trị cực đại A yCD = B C 192 cm    : x  y  z  2020 0 C yCT hàm số y =- x + x - B yCD =- C yCD =- D 86 cm    : x  y  z  2022 0 D D yCD =- Đáp án đúng: D Câu 32 Cho hàm số f ( x) liên tục, không âm [ 0;3], thỏa Giá trị f ( 3) B 11 A Đáp án đúng: B Giải thích chi tiết: Lời giải với x Ỵ [ 0;3] f ( 0) = D C Từ giả thiết ta có Mà f ( 0) = ị C = 1ắắ đ f ( x) = ( x2 +1) - = x4 + 2x2 , " x Ỵ [ 0;3] ¾¾ ® f ( 3) = 11 Câu 33 Cho hàm số liên tục có đạo hàm thỏa  1 4089 mãn f ( x) f ( x)  xe A 6123 Đáp án đúng: B Giải  f ( x ) 2 x  x 1 1  f (0) Biết B 12273 thích I  (4 x  1) f ( x)dx  phân số tối giản Tính D 12279 C 6125 chi a b tiết: Ta có Mà  1 4089  I 12285   x  1 f  x  dx  5) Quy tắc: Nếu u u  x  nhận giá trị dương [ln u ]  u u K ln( f ( x )) g ( x )dx Nếu [ln( f ( x))] g ( x) Câu 34 Cho hàm số y=− x −2 m x 2+ Với giá trị m hàm số có cực đại mà khơng có cực tiểu? A m ≥1 B m=∅ C m

Ngày đăng: 12/04/2023, 00:23

w