Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho số thực dươngm Tính I = m∫ 0 dx x2 + 3x +[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Rm dx theo m? + 3x + m+1 m+2 2m + m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 2m + m+2 m+1 Câu Hàm số sau đồng biến R? √ √ A y = tan x B y = x2 + x + − x2 − x + C y = x4 + 3x2 + D y = x2 Câu Cho số thực dươngm Tính I = Câu R3 Công thức sai? A R sin x = − cos x + C C cos x = sin x + C x2 R B R e x = e x + C D a x = a x ln a + C Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A < m , B −4 < m < C m < D ∀m ∈ R Câu √Cho hai√ số thực a, bthỏa mãn√ a > b > Kết luận√ sau sai? √ √5 − − 2 A a b D ea > eb + 2x x+1 Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = (−∞; 2) C S = [ 0; +∞) D S = [ -ln3; +∞) Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > B m > 2e C m ≥ e−2 D m > e2 Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính qng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 28 (m) B S = 24 (m) C S = 20 (m) D S = 12 (m) Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 12 (m) B S = 20 (m) C S = 24 (m) D S = 28 (m) Câu 10 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = sin x B y = x−1 C y = tan x D y = x3 − 2x2 + 3x + Câu 11 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ C m ∈ (0; 2) D m ≥ A m ∈ (−1; 2) B −1 < m < Câu 12 Cho < a , 1; < x , Đẳng thức sau sai? A loga (x − 2)2 = 2loga (x − 2) B loga2 x = loga x C loga x2 = 2loga x D aloga x = x −u (2; −2; 1), kết luận sau đúng? Câu 13 Trong không gian với hệ tọa độ Oxyz cho → √ −u | = −u | = −u | = −u | = A |→ B |→ C |→ D |→ Trang 1/5 Mã đề 001 Câu 14 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (0; 2; 0) C (0; 6; 0) D (−2; 0; 0) Câu 15 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (−2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; −3; −1) Câu 16 Cho a > 1; < x < y Bất đẳng thức sau đúng? B ln x > ln y C loga x > loga y A log x > log y D log x > log y a a Câu 17 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 1979 B S = 84 C S = 364 D S = 96 Câu 18 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (2; +∞) B (−∞; −2) C (−2; 0) D (0; 2) √ Câu 19 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ B (x + 4)2 + (y − 8)2 = 20 A (x + 4)2 + (y − 8)2 = √5 C (x − 4)2 + (y + 8)2 = D (x − 4)2 + (y + 8)2 = 20 Câu 20 Tập nghiệm bất phương trình log3 (10 − x+1 ) ≥ − x chứa số nguyên A Vô số B C D Câu 21 Gọi S tập hợp tất giá trị tham số m để bất phương trình log3 (x2 − 5x + m) > log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞) Tìm khẳng định A S = (7; +∞) B S = (−∞; 4) C S = (−∞; 5] D S = [6; +∞) Câu 22 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng ′ ′ ′ 600 Biết diện tích tam giác ∆A′ BC BC √ 2a Tính thể tích V khối lăng trụ ABC.A 3 √ 2a a C V = a3 D V = A V = 3a3 B V = 3 Câu 23 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 A −16 B C D 16 Câu 24 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 A M( ; ; −1) B M(− ; ; −1) C M(− ; ; −1) D M(− ; ; 2) 4 4 Câu 25 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 48.621.980 đồng B 43.091.358 đồng C 45.188.656 đồng D 46.538667 đồng √ x− x+2 Câu 26 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D Câu 27 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C 1 Câu 28 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) k(k + 1) A M = B M = C M = 2loga x 3loga x loga x D D M = 4k(k + 1) loga x Trang 2/5 Mã đề 001 Câu 29 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √ h √ √ √ 2π − 3 2π − 3 π− A B C D 12 12 m Câu 30 Xác định tập tất giá trị tham số m để phương trình 2x3 + x2 − 3x − = − 2 có nghiệm phân biệt 19 19 B S = (−2; − ) ∪ ( ; 7) A S = (−2; − ) ∪ ( ; 6) 4 4 19 C S = (−3; −1) ∪ (1; 2) D S = (−5; − ) ∪ ( ; 6) 4 Câu 31 Đồ thị hàm số sau có điểm cực trị: A y = x4 − 2x2 − B y = x4 + 2x2 − C y = 2x4 + 4x2 + D y = −x4 − 2x2 − Câu 32 Tập xác định hàm số y = logπ (3 x − 3) là: A [1; +∞) B Đáp án khác C (3; +∞) D (1; +∞) Câu R33 Chọn mệnh đề mệnh đề sau: R A sin xdx = cos x + C B x dx =5 x + C R R (2x + 1)3 e2x +C D e2x dx = + C C (2x + 1)2 dx = Câu 34 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 35 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 √ 2x − x2 + Câu 36 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 37 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B C 1 R3 R2 R3 1 R3 R2 D R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx = − |x2 − 2x|dx R3 (x2 − 2x)dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 38 Trong không gian với hệ trục tọa độ Oxyz cho → → − → − tơ u + v −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 13; 16) A 2→ B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ Trang 3/5 Mã đề 001 Câu 39 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 + sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln √ Câu 40 Tính đạo hàm hàm số y = log4 x2 − x x A y′ = B y′ = √ C y′ = 2 (x − 1) ln 2(x − 1) ln x − ln Câu 41 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A B 128 C 64 D y′ = (x2 x − 1)log4 e x2 )=8 D 32 Câu 42 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a C a A 2a B D 2 2 Câu 43 Cho hàm số f (x) = − x + (2m + 3)x − (m + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B 16 C D Câu 44 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B C −3 D −2 f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x A f (x) = −3 cos 3x B f (x) = C f (x) = − D f (x) = cos 3x 3 Câu 45 Biết R − → Câu 46 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → Góc hai mặt phẳng (P) (Q) n→ Q Biết cosin góc hai vectơ nP nQ − A 45◦ B 90◦ C 30◦ D 60◦ z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 47 Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường trịn (C) √ √ A r = B r = C r = D r = x−2 y x−1 = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 5 A ( ; − ; ) B (2 ; −3 ; 1) C ( ; − ; ) D ( ; − ; ) 3 3 3 3 Câu 48 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : Câu 49 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vng cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001