Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằ[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 a3 Câu Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 1350 B 600 C 300 D 450 √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 300 B 600 C 450 D 1200 2x + 2017 Câu Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng D Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 √ Câu Đạo hàm hàm số y = log 3x − là: 6 B y′ = C y′ = D y′ = A y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab) = ln a ln b B ln(ab2 ) = ln a + (ln b)2 a ln a C ln( ) = D ln(ab2 ) = ln a + ln b b ln b Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 2 (m ) C (m ) D 3(m2 ) A (m ) B Câu Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 = y−1 = z−1 Gọi (P) mặt 2 −3 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A 13 B C D 113 Câu Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (−1; −2; −3) C (−2; −4; −6) D (2; 4; 6) Câu Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d = R C d = D d > R Câu 10 Cho khối nón có đình S , chiều cao thể tích 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, đường tròn đáy đến mặt √ phẳng (S AB) √ khoảng cách từ tâm 24 B C D A 24 Câu 11 Tiệm cận ngang đồ thị hàm số y = A y = 13 B y = − 31 2x+1 3x−1 đường thẳng có phương trình: C y = − 23 D y = 23 Trang 1/5 Mã đề 001 Câu 12 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; 6) B (6; 7) C (−6; 7) D (7; −6) R2 R2 Câu 13 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A B −1 C −9 D Câu 14 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) B C D 3a A Câu 15 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −7 B C D −1 √ Câu 16 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 3; 3, 5)· B (3, 5; 3, 7)· C (3, 7; 3, 9)· D (3, 1; 3, 3)· Câu 17 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −2 B −8 C −4 D −6 x−2 y x−1 Câu 18 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 5 A ( ; − ; ) B ( ; − ; ) C (2 ; −3 ; 1) D ( ; − ; ) 3 3 3 3 1+i z Câu 19 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = ′ mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM 15 15 25 25 B S = C S = D S = A S = 2 4 Câu 20 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 −2 − 3i Câu 21 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 22 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A B 25π C D 5π Câu 23 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 1)2 + (y − 4)2 = 125 B (x − 5)2 + (y − 4)2 = 125 C x = D (x + 1)2 + (y − 2)2 = 125 Câu 24 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 4π B 2π C 3π D π √ Câu 25 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 10 B |z| = 33 C |z| = 50 D |z| = Trang 2/5 Mã đề 001 −2 − 3i Câu 26 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 27 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B C D −1 Câu 28 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Đường tròn B Một đường thẳng C Hai đường thẳng D Parabol Câu 29 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = 1+i z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 15 25 15 A S = B S = C S = D S = 4 Câu 30 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = C P = B P = D P = 2 Câu 31 Gọi z1 z2 nghiệm phương trình z − 4z + = Gọi M, N điểm biểu diễn z1 , z2 trên√mặt phẳng phức Khi độ dài MN √ A MN = B MN = C MN = D MN = z+i+1 Câu 32 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một Elip B Một đường thẳng C Một đường tròn D Một Parabol Câu 33 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 2; 0),B(3; −2; 2),C(2; 3; 1) Khoảng cách từ trung điểm đoạn AB đến trọng tâm tam giác ABC A B C D → − → − → − −a b , với → −a b khác , cos φ Câu 34 Gọi φ góc hai vectơ → → − → − − − − a b → −a → −a → → −a + → b −→ b b B C D A − → − → − − → → −a → → − → − − → a b a b b a b Câu 35 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 5; 2),B(3; 7; −4) Tọa độ hình chiếu trung điểm đoạn AB lên trục hoành A (1; 0; 0) B (4; 0; 0) C (0; 6; −1) D (2; 0; 0) Câu 36 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 5; 2),B(3; 7; −4),C(2; 0; −1) Tọa độ hình chiếu trọng tâm tam giác ABC lên mặt phẳng (Oyz) A (0; 4; 4) B (2; 0; 0) C (0; 4; −1) D (0; 4; 1) Câu 37 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 5; 2),B(3; 7; −4) Tọa độ điểm M đối xứng với A qua B A (2; 6; −1) B (7; 9; −10) C (5; 9; −3) D (5; 9; −10) Câu 38 Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ ⃗a = (2; 1; 1),⃗b = (m; 2n − 4; 2) phương Khi giá trị m, n A m = 4, n = −3 B m = −4, n = −3 C m = 4, n = D m = −4, n = Câu 39 Tìm giá trị nhỏ hàm số f (x) = 2x3 − 3x2 − 12x + 10 đoạn [−3; 3] A −10 B C −35 D 17 Câu 40 Điểm cực đại đồ thị hàm số y = x4 − 2x2 + A (1; 2) B (0; 3) C x = D x = Câu 41 Hình đa diện có cạnh? Trang 3/5 Mã đề 001 A 15 B 21 C 18 D 12 Câu 42 Xét hàm số f (x) = −x4 + 2x2 + đoạn [0; 2] Trong khẳng định sau, khẳng định sai? A Hàm số f (x) đạt giá trị nhỏ đoạn [0; 2] x = B Hàm số f (x) đạt giá trị lớn đoạn [0; 2] x = C Giá trị lớn hàm số f (x) đoạn [0; 2] D Giá trị nhỏ hàm số f (x) đoạn [0; 2] −5 Câu 43 Cho hàm số y = −x4 − x2 + Trong khẳng định sau, khẳng định sai? A Đồ thị hàm số cắt trục tung điểm (0; 1) B Đồ thị hàm số có điểm cực đại C Đồ thị hàm số khơng có tiệm cận D Điểm cực tiểu hàm số (0; 1) Câu 44 Cho tứ diện OABC có cạnh OA, OB, OC đơi vng góc OA = OB = OC = Tính thể tích V khối tứ diện OABC 1 B V = C V = D V = A V = Câu 45 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 6πR3 C πR3 D 2πR3 Câu 46 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ a 3a 2a 5a B D A √ C √ 5 Câu 47 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = sin x B y = tan x 3x + C y = x3 − 2x2 + 3x + D y = x−1 Câu 48 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x2 − 2x + C y = −x4 + 3x2 − D y = x3 Câu 49 Hàm số sau khơng có cực trị? A y = x2 C y = cos x B y = x4 + 3x2 + D y = x3 − 6x2 + 12x − Câu 50 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C D −6 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001