1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (758)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 125,37 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính qng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 24 (m) B S = 20 (m) C S = 28 (m) D S = 12 (m) Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (0; 2) B m ∈ (−1; 2) C m ≥ D −1 < m < x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = −1 C y = D y = − R R R R 2 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 450 B 300 C 600 D 360 R1 √3 Câu Tính I = 7x + 1dx 45 A I = 28 B I = 20 C I = 60 28 D I = 21 ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ab < B ad > C ac < D bc > Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 D A −6 B C Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B ln x > ln y C loga x > loga y D log x > log y a a Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A K(3; 0; 15) B I(−1; −2; 3) C J(−3; 2; 7) D H(−2; −1; 3) 1 Câu 10 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C D 16 Câu 11 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A 3a B C D ′ Câu 12 Cho hàm số y = f (x) có đồ thị y = f (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2020 B 2022 C 2021 D 2019 Trang 1/5 Mã đề 001 Câu 13 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 13 B 18 C 17 D 20 x−2 y x−1 Câu 14 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 C ( ; − ; ) D ( ; − ; ) A (2 ; −3 ; 1) B ( ; − ; ) 3 3 3 3 Câu 15 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (3; +∞) B Hàm số cho đồng biến khoảng (−∞; 3) C Hàm số cho đồng biến khoảng (1; 4) D Hàm số cho nghịch biến khoảng (1; 4) Câu 16 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 Câu 17 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? B z · z = a2 − b2 C z − z = 2a D |z2 | = |z|2 A z + z = 2bi Câu 18 Trong kết luận sau, kết luận sai A Mô-đun số phức z số phức C Mô-đun số phức z số thực B Mô-đun số phức z số thực không âm D Mô-đun số phức z số thực dương √ Câu 19 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B m ≥ m ≤ C −1 ≤ m ≤ D m ≥ m ≤ −1 Câu 20 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D z2 Câu 21 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B 13 C D 11 (1 + i)(2 − i) Câu 22 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = Câu 23 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = Câu 24 Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi√đó mơ-đun số phức w = 6z − 25i A 13 B 29 C D Câu 25 Số phức z = A + 2i + i2017 có tổng phần thực phần ảo 2−i B C -1 D Câu 26 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B C −2 D Câu 27 Hàm số f (x) thoả mãn f ′ (x) = x x là: A (x + 1) x + C B x2 + x+1 x+1 + C C (x − 1) x + C D x2 x + C Trang 2/5 Mã đề 001 Câu 28 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân bằng: A B 2025 C −2024 D 2024 R2 −1 f ′ (x) Câu 29 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z − 12 = B 3x − 2y + z + = C 3x − 2y + z − = D 3x + 2y + z − = Câu 30 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (−3; −1; 4) B (−3; −1; −4) C (3; 1; 4) D (3; −1; −4) R0 Câu 31 Giá trị −1 e x+1 dx A e B − e C e − D −e Câu 32 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F(x) = f ′ (x) B F ′ (x) = f (x) C F(x) = f ′ (x) + C D F ′ (x) + C = f (x) Câu 33 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A x + y − z − = B 6x + y − z − = C x + y − z + = D x − y + z + = Câu 34 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| C P = 2016 D P = −2016 A P = B max T = Câu 35 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 √ Câu 36 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B a + b + c 2 C a + b + c − ab − bc − ca D √ Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm P Câu 38 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = D A = −1 Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z √2 | √ √ B P = 26 C P = + D P = 34 + A P = Câu 40 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 85 97 A T = 13 B T = 13 C T = D T = 3 Câu 41 (Sở Nam Định) Tìm mô-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i C |z| = D |z| = A |z| = B |z| = Trang 3/5 Mã đề 001 Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A √ D B C 2 Câu 43 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A B 12 C D Câu 44 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (−3; 0) Câu 45 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B C (1; 5) D (−1; 1) ax + b 2x )e + C Khi giá trị a + b là: C D Câu 46 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 + sin 3x)5 x+cos3x ln B y′ = x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 47 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 B C D A 10 Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng C 36080253 đồng B 36080254 đồng D 36080255 đồng d Câu 49 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C a D 2a Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 13:14

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN