Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho −→u (2;−2; 1), kết luận nào sau[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 → − Câu Trong không gian với hệ tọa độ Oxyz cho u (2; −2; 1),√kết luận sau đúng? −u | = −u | = −u | = −u | = D |→ A |→ B |→ C |→ 2 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x + y + z − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = 21 C R = D R = 29 Rm dx theo m? Câu Cho số thực dươngm Tính I = x + 3x + m+2 2m + m+2 m+1 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) 2m + m+2 m+1 m+2 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = −1+ B y = +1− ln ln 5 ln ln x x C y = − D y = + ln ln 5 ln x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = − C y = D y = −1 R R R R 2 Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ≥ B m ∈ (0; 2) C m ∈ (−1; 2) D −1 < m < Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = (−∞; 2) C S = (−∞; ln3) D S = [ -ln3; +∞) Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = tan x x−1 C y = sin x D y = x3 − 2x2 + 3x + Câu Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, diện √ tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 12 B 21 C 18 D 27 6 R R R Câu 10 Nếu f (x) = g(x) = −4 ( f (x) + g(x)) A −2 B C D −6 f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x A f (x) = cos 3x B f (x) = C f (x) = − D f (x) = −3 cos 3x 3 Câu 12 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A 310 B A310 C C10 D 103 Câu 11 Biết R Trang 1/4 Mã đề 001 x−2 y−6 z+2 Câu 13 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ B 10 C √ D √ A √ 10 53 √ Câu 14 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 1; 3, 3)· B (3, 3; 3, 5)· C (3, 5; 3, 7)· D (3, 7; 3, 9)· Câu 15 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D Câu 16 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A J(−3; 2; 7) B H(−2; −1; 3) C K(3; 0; 15) D I(−1; −2; 3) Câu 17 Số phức z = A + 2i + i2017 có tổng phần thực phần ảo 2−i B C -1 D Câu 18 2i, z2 = − i Giá trị biểu √ Cho số phức z1 = + √ √ thức |z1 + z1 z2 | √ A 30 B 10 C 10 D 130 − 2i (1 − i)(2 + i) Câu 19 Phần thực số phức z = + 2−i + 3i 11 11 29 29 A − B C D − 13 13 13 13 2017 (1 + i) có phần thực phần ảo đơn vị? Câu 20 Số phức z = 21008 i A B C 21008 D Câu 21 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 2i B −3 − 10i C −3 + 2i D 11 + 2i (1 + i)(2 + i) (1 − i)(2 − i) Câu 22 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z số ảo B z = C |z| = D z = z z 25 1 Câu 23 Cho số phức z thỏa Khi phần ảo z bao nhiêu? = + z + i (2 − i)2 A −31 B 31 C −17 D 17 Câu 24 Cho hai √ số phức z1 + z2 √ số phức z1 = + i z2 = − 3i Tính mơ-đun A |z1 + z2 | = 13 B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 4(−3 + i) (3 − i)2 Câu 25 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ A |w| = 85 B |w| = 48 C |w| = D |w| = R4 R4 R4 Câu 26 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B −1 C D Câu 27 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (0; 1) C (−1; 2) D (1; 2) Trang 2/4 Mã đề 001 Câu 28 Xét số phức z thỏa mãn z − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 28 B 14 C 18 + D 11 + Câu 29 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: C y′ = πxπ A y′ = xπ−1 B y′ = xπ−1 π D y′ = πxπ−1 Câu 30 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 B C D A 35 35 35 Câu 31 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 48 B 49 C 89 D 90 Câu 32 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (0; −2) B (2; 0) C (−2; 0) D (0; 2) Câu 33 Có số nguyên x thỏa mãn log3 A 193 B 184 x2 − 16 x2 − 16 < log7 ? 343 27 C 186 D 92 Câu 34 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? B < |z| < A < |z| < 2 C < |z| < 2 D + z + z2 số thực − z + z2 < |z| < 2 Câu 35 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B 15 C D A 10 Câu 36 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A |z| = B z số ảo C z số thực không dương D Phần thực z số âm = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp ! sau đây? ! ! 1 A ; B 0; C ; D ; +∞ 4 4 Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − Câu 38 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 39 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Câu 40 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A max T = B P = 2016 C P = −2016 D P = Trang 3/4 Mã đề 001 Câu 41 Cho số phức z thỏa mãn z + √ √ A 13 B = Tổng giá trị lớn nhỏ |z| z C D Câu 42 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = + C P = 34 + D P = A P = 26 −a = (4; −6; 2) Phương Câu 43 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = + 2ty = −3tz = −1 + t C x = + 2ty = −3tz = + t B x = −2 + 2ty = −3tz = + t D x = −2 + 4ty = −6tz = + 2t π R4 Câu 44 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 15π π2 − A B 16 16 Câu 45 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại C Hàm số đạt cực đại π2 + 16π − C 16 π2 + 16π − 16 D 16 B Hàm số đạt cực đại D Hàm số đạt cực đại Câu 46 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh hình trụ A 6πa2 B 2πa2 C 5πa2 D 4πa2 √ Câu √ 47 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ √ A d = a B d = 2a C d = a D d = a x−1 y+2 z Câu 48 Đường thẳng (∆) : = = không qua điểm đây? −1 A A(−1; 2; 0) B (1; −2; 0) C (−1; −3; 1) D (3; −1; −1) Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm −−→ −−→ −−→ tọa độ điểm M thỏa mãn OM = 2AB − AC A M(−2; −6; 4) B M(2; −6; 4) C M(5; 5; 0) D M(−2; 6; −4) Câu 50 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 1979 B S = 96 C S = 84 D S = 364 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001