Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3 2 , ((ℵ) có[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A B √ C 3π D 3π 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Rm dx theo m? + 3x + m+1 m+2 2m + m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 2m + m+2 m+1 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + 2ty = + tz = C x = + ty = + 2tz = D x = + 2ty = + tz = − 4t Câu Cho số thực dươngm Tính I = x2 Câu R4 Công thức sai? A R cos x = sin x + C C a x = a x ln a + C R B R e x = e x + C D sin x = − cos x + C −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ Câu Cho hình hộp ABCD.A B C D có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 30a3 C 20a3 D 60a3 ′ ′ ′ ′ Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = − B y = −1+ ln ln 5 ln ln x x + D y = +1− C y = ln 5 ln ln Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = sin x 3x + C y = tan x D y = x−1 Câu Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −6 B −2 C −8 D −4 Câu 10 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B −3 C −2 D Câu 11 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −7 B −1 C D Trang 1/5 Mã đề 001 Câu 12 Tập nghiệm bất phương trình 52x+3 > −1 A (−∞; −3) B (−3; +∞) C R D ∅ Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) A (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 B (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 √ C (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 D (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 Câu 14 Cho hàm số f (x) liên tục R R2 ( f (x) + 2x) = Tính A −1 B R2 f (x) C D −9 Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) tiếp xúc mặt cầu (S ) B (P) không cắt mặt cầu (S ) C (P) cắt mặt cầu (S ) D (P) qua tâm mặt cầu (S ) Câu 16 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A x5 − sin x + C B 5x5 − sin x + C C 5x5 + sin x + C Câu 17 Với số phức z, ta có |z + 1|2 A z · z + z + z + B z2 + 2z + C |z|2 + 2|z| + (1 + i)(2 − i) Câu 18 Mô-đun số phức z = √ √ + 3i A |z| = B |z| = C |z| = D x5 + sin x + C D z + z + D |z| = Câu 19 Cho hai √ √ số phức z1 = + i z2 = − 3i Tính mơ-đun số phức z1 + z2 A |z1 + z2 | = 13 B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 20 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? A z = C z số ảo D |z| = B z = z z Câu 21 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B 11 + 2i C −3 − 2i D −3 − 10i Câu 22 Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi mơ-đun số phức√w = 6z − 25i A 13 B C D 29 Câu 23 Số phức z = A -1 + 2i + i2017 có tổng phần thực phần ảo 2−i B C D Câu 24 Tính mơ-đun số phức z√thỏa mãn z(2 − i) + 13i√= √ 34 34 A |z| = 34 B |z| = C |z| = D |z| = 34 3 2017 Câu 25 Cho P = + i + i + i + · · · + i Đâu phương án xác? A P = B P = C P = + i D P = 2i Câu 26 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? b Rb A a f (2x + 3) = F(2x + 3) a B Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Rb C a k · f (x) = k[F(b) − F(a)] Ra D b f (x) = F(b) − F(a) Trang 2/5 Mã đề 001 Câu 27 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z + 15 = B x + 2y + 2z − 15 = C x − 2y + 2z − 15 = D x + 2y + 2z + 15 = R1 R R1 R1 Câu 28 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A 12 B C −8 D −3 Câu 29 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ A f (x)dx = √ + C B f (x)dx = 2x + + C 2x + R R √ 1√ C f (x) = 2x + + C D f (x)dx = 2x + + C Câu 30 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F(x) = f ′ (x) B F ′ (x) = f (x) C F(x) = f ′ (x) + C D F ′ (x) + C = f (x) Câu 31 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (−3; −1; 4) B (3; −1; −4) C (3; 1; 4) D (−3; −1; −4) Câu 32 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx + cosx + C B F(x) = sinx + cosx + C C F(x) = sinx − cosx + C D F(x) = −sinx − cosx + C R1 Câu 33 Tích phân e−x dx e−1 1 B e − C D A − e e e √ Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Câu 35 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 B ; +∞ C 0; D ; A ; 4 4 Câu 36 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B z số ảo C |z| = D Phần thực z số âm √ 2 Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = 3 √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = (|z| − 2)2 D P = |z|2 − Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z2 | √ √ √ A P = + B P = 34 + C P = 26 D P = Trang 3/5 Mã đề 001 Câu 40 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| √ A P = B P = 2016 C max T = D P = −2016 Câu 41 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm Q bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm S D điểm P Câu 43 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > B m > m < −1 C m > m < − D m < −2 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A B −4 C D −2 Câu 45 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 500π 400π 250π 125π A B C D 9 Câu 46 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 31π 32π B C D 6π A 5 √ 2x − x2 + Câu 47 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 48 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 3a3 B 9a3 C 4a3 D 6a3 Câu 49 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 27 25 23 A B C D 4 4 Câu 50 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001