Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình phẳng (D) giới hạn bởi các đường y = √ x, y = x, x = 2 quay qua[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình phẳng (D) giới hạn đường y = thể tích V khối trịn xoay tạo thành? A V = B V = π √ C V = x, y = x, x = quay quanh trục hồnh Tìm π D V = 10π 3 , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A 3π C √ D 3π B 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Trong khơng gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (2; −1; −2) C (−2; 1; 2) D (−2; −1; 2) Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ D R = 29 A R = B R = C R = 21 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ a 5a 2a 3a A √ B C √ D 5 Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A ln x > ln y B log x > log y C log x > log y D loga x > loga y a a Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường parabol C Đường hypebol D Đường elip Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; 21; 21) B C(20; 15; 7) C C(8; ; 19) D C(6; −17; 21) Câu Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D Câu 10 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D Câu 11 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C 16 D Câu 12 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 Trang 1/5 Mã đề 001 Câu 13 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = − ty = tz = + t B x = + 2ty = 2tz = + t C x = + ty = tz = − t D x = + ty = tz = + t − → Câu 14 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → Góc hai mặt phẳng (P) (Q) n→ Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 90 B 45 C 30◦ D 60◦ − Câu 15 Đạo hàm hàm số y = (2x + 1) tập xác định − − A − (2x + 1) B (2x + 1) ln(2x + 1) − − C 2(2x + 1) ln(2x + 1) D − (2x + 1) R Câu 16 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x A f (x) = B f (x) = cos 3x C f (x) = −3 cos 3x D f (x) = − 3 (1 + i)(2 − i) Câu 17 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = !2016 !2018 1+i 1−i Câu 18 Số phức z = + 1−i 1+i A B −2 C + i D Câu 19 Với số phức z, ta có |z + 1|2 A z · z + z + z + B |z|2 + 2|z| + C z + z + Câu 20 Tính √ mơ-đun số phức z thỏa mãn z(2 − i) + 13i =√1 34 34 A |z| = B |z| = 34 C |z| = 3 Câu 21 Tìm số phức liên hợp số phức z = i(3i + 1) A z = − i B z = −3 − i C z = + i Câu 22 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực không âm D z2 + 2z + D |z| = √ 34 D z = −3 + i B Mô-đun số phức z số phức D Mô-đun số phức z số thực + 2i + i2017 có tổng phần thực phần ảo 2−i B C D 2(1 + 2i) Câu 24 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C 13 D − 2i (1 − i)(2 + i) Câu 25 Phần thực số phức z = + 2−i + 3i 11 29 29 11 A − B − C D 13 13 13 13 Câu 23 Số phức z = A -1 Câu 26 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 1 2 A F(x) = − e x + C B F(x) = e x + C F(x) = − (2 − e x ) D F(x) = (e x + 5) 2 2 Câu R27 Mệnh đề sau sai? A f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R Trang 2/5 Mã đề 001 R R R B R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R R C R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R D ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R R1 Câu 28 Tích phân e−x dx 1 e−1 C − D A e − B e e e R1 R R1 R1 Câu 29 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A −3 B C 12 D −8 Câu 30 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? b Rb A a f (2x + 3) = F(2x + 3) a Ra B b f (x) = F(b) − F(a) C Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Rb D a k · f (x) = k[F(b) − F(a)] Câu 31 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = D I = 10 Câu 32 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 0; 2) B C(−1; 0; −2) C C(−1; −4; 4) D C(1; 4; 4) Câu 33 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x + 2)2 + y2 + z2 = C (x + 2) + y2 + z2 = D (x − 2)2 + y2 + z2 = Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 1 A ; +∞ B 0; C ; D ; 4 4 √ Câu 35 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm Q Câu 36 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 √ √ √ 42 √ + 3i+ 15 Mệnh đề đúng? Câu 37 Cho số phức z thỏa mãn − 5i |z| = z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 z Câu 38 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A 2 B C D Trang 3/5 Mã đề 001 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = |z|2 − C P = (|z| − 4)2 D P = |z|2 − z+1 số ảo Tìm |z| ? z−1 B |z| = C |z| = Câu 40 Cho số phức z , thỏa mãn A |z| = D |z| = Câu 41 Cho số phức z (không phải số thực, khơng phải số ảo) thỏa mãn Khi mệnh đề sau đúng? A < |z| < B < |z| < 2 + z + z2 số thực − z + z2 D < |z| < 2 √ 2 Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 43 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −16 B m = C m = D m = m = −10 C < |z| < 2 Câu 44 Chọn mệnh đề mệnh đề sau: A Nếu a < a x > ay ⇔ x < y B Nếu a > a x > ay ⇔ x > y C Nếu a > a x = ay ⇔ x = y D Nếu a > a x > ay ⇔ x < y Câu 45 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cách hai đường thẳng √ √ cạnh AB, AD Tính khoảng √ 3a 3a 30 3a a 15 B C D A 2 10 √ Câu 46 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = √ C y′ = D y′ = (x − 1)log4 e (x − 1) ln 2(x − 1) ln x2 − ln Câu 47 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ S A = 2a Gọi α số đo √ góc đường thẳng S√B mp(S AC) Tính giá trị sin α 15 15 A B C D 10 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = 0.√ √ A R = B R = 14 C R = 15 D R = → − → − Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho u = (2; 1; 3), v = (−1; 4; 3) Tìm tọa độ −u + 3→ −v véc tơ 2→ → − → − −u + 3→ −v = (1; 14; 15) A u + v = (1; 13; 16) B 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ Câu 50 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 2mn + n + A log2 2250 = B log2 2250 = m n 2mn + n + 3mn + n + C log2 2250 = D log2 2250 = n n Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001