Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đ[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −15 B m = 13 C m = D m = −2 −u (2; −2; 1), kết luận sau đúng? Câu Trong hệ tọa độ Oxyz cho → √ không gian với→ − −u | = −u | = → − B | u | = C |→ D |→ A | u | = Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 Câu Hàm √ số sau√đây đồng biến R? B y = tan x A y = x2 + x + − x2 − x + C y = x2 D y = x4 + 3x2 + D 4πR3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 C C(20; 15; 7) D C(6; −17; 21) A C(6; 21; 21) B C(8; ; 19) Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hoành độ x = là: x x A y = −1+ B y = + ln ln 5 ln x x C y = − D y = +1− ln ln 5 ln ln x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 A y = −1 B y = − C y = D y = R R R R 2 Câu R8 Công thức sai? R A R e x = e x + C B R sin x = − cos x + C C cos x = sin x + C D a x = a x ln a + C Câu Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D Câu 10 Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A B 2022 C D Câu 11 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vuông cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 2 6 Câu 12 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón B S = πa2 C S = πa2 D S = πa2 A S = πa2 4 Trang 1/5 Mã đề 001 Câu 13 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D Câu 14 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 21 B 18 C 27 D 12 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 15 Cho số phức zthỏa mãn i + trịn (C) √ Tính bán kính rcủa đường tròn (C) √ A r = B r = C r = D r = R6 R6 R6 Câu 16 Nếu f (x) = g(x) = −4 ( f (x) + g(x)) A B −6 C −2 D Câu 17 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B m ≥ m ≤ C m ≥ m ≤ −1 D −1 ≤ m ≤ √ Câu 18 Cho số phức z = + 5i Tìm số phức w = iz + z A w = − 3i B w = + 7i C w = −7 − 7i D w = −3 − 3i (1 + i)(2 + i) (1 − i)(2 − i) Câu 19 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A |z| = B z số ảo C z = z D z = z Câu 20 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z − z = 2a B z + z = 2bi C |z2 | = |z|2 D z · z = a2 − b2 Câu 21 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 22 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = !2016 !2018 1−i 1+i Câu 23 Số phức z = + 1−i 1+i A + i B C −2 D Câu 24 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 + i B z = −3 − i C z = − i D z = + i 2(1 + 2i) Câu 25 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A 13 B C D R0 Câu 26 Giá trị −1 e x+1 dx A e B − e C −e D e − R Câu 27 Tìm nguyên hàm I = xcosxdx x A I = xsinx − cosx + C B I = x2 sin + C x D I = xsinx + cosx + C C I = x2 cos + C Câu 28 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = cos(2023x) B f (x) = 2023cos(2023x) C f (x) = −2023cos(2023x) D f (x) = − cos(2023x) 2023 Trang 2/5 Mã đề 001 Câu 29 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? b Rb A a f (2x + 3) = F(2x + 3) a Ra B b f (x) = F(b) − F(a) C Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Rb D a k · f (x) = k[F(b) − F(a)] Câu 30 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = D I = 10 R2 Câu 31 Tính tích phân I = xe x dx A I = −e2 B I = e2 C I = e D I = 3e2 − 2e Câu 32 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B C D −2 Câu R33 Mệnh đề sau sai? A f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R R R R B ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R R R C k f (x) = k f (x) với số k với hàm số f (x) liên tục R R R R D ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R Câu 34 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C D 13 √ Câu 35 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B ≤ |z| ≤ C |z| > D |z| < 2 2 Câu 36 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B Phần thực z số âm C z số ảo D |z| = Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = B P = + C P = 34 + D P = 26 √ Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm P Câu 39 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B 22016 C 21008 D −22016 Câu 40 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Trang 3/5 Mã đề 001 Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B C √ D 2 Câu 42 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? B C A 2 D d Câu 43 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B 2a C a D a Câu 44 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 45 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 4a3 B 12a3 C 6a3 D 3a3 Câu 46 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < −1 B m < −2 C m > m < − D m > Câu 47 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A 128 B 32 C x2 )=8 D 64 Câu 48 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a > a x = ay ⇔ x = y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x > y Câu 49 Cho tứ diện DABC, tam giácABC vuông B, DA vuông góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 2 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 50 Trong khơng gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001