Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y = x x2 + 1 trên tập xác định của nó là A m[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 A y = B y = −1 C y = − D y = R R R R 2 Câu Đồ thị hàm số sau có vô số đường tiệm cận đứng? A y = tan x B y = x3 − 2x2 + 3x + 3x + C y = D y = sin x x−1 Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = + 2x x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? B < m , C −4 < m < D ∀m ∈ R A m < Câu Hàm số sau khơng có cực trị? A y = cos x B y = x4 + 3x2 + C y = x3 − 6x2 + 12x − D y = x2 π π x π F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = + C F( ) = + D F( ) = − 4 4 4 Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính qng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 24 (m) B S = 12 (m) C S = 20 (m) D S = 28 (m) Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B ln x > ln y C log x > log y D log x > log y a a Câu Một mặt cầu có diện tích 4πR thể tích khối cầu A πR3 B 4πR3 C πR3 D πR3 Câu Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −6 B −2 C −8 D −4 Câu 10 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A 192 B −384 C 384 D −192 Câu 11 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vuông cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 6 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 12 Cho số phức zthỏa mãn i + trịn (C) √ Tính bán kính rcủa đường trịn (C) √ A r = B r = C r = D r = Trang 1/5 Mã đề 001 − → Câu 13 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 45 B 90 C 60◦ D 30◦ Câu 14 Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A B 2022 C D R2 R2 Câu 15 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A B C −9 D −1 Câu 16 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A N(1 ; ; 7) B M(0 ; ; 2) C Q(4 ; ; 2) D P(4 ; −1 ; 3) Câu 17 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? B z − z = 2a C |z2 | = |z|2 D z · z = a2 − b2 A z + z = 2bi Câu 18 Cho hai số phức z1 = + i z2√= − 3i Tính mô-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = (1 + i)(2 + i) (1 − i)(2 − i) Câu 19 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z = B |z| = C z = z D z số ảo z Câu 20 Số phức z = A + 2i + i2017 có tổng phần thực phần ảo 2−i B C D -1 Câu 21 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B P(−2; 3) C N(2; 3) D M(2; −3) Câu 22 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = C P = 2i D P = + i Câu 23 Những số sau vừa số thực vừa số ảo? A C.Truehỉ có số B Chỉ có số C Khơng có số D 1 25 = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 B −31 C −17 D 31 Câu 24 Cho số phức z thỏa A 17 Câu 25 Cho số phức z = + 5i Tìm số phức w = iz + z A w = − 3i B w = −7 − 7i C w = −3 − 3i D w = + 7i Câu 26 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân bằng: A 2025 B 2024 C −2024 D R2 −1 f ′ (x) Câu 27 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z − = B 2x + y − z − = C −2x + y − z + = D −2x + y − z + = Câu 28 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = cos(2023x) C f (x) = 2023cos(2023x) B f (x) = − cos(2023x) 2023 D f (x) = −2023cos(2023x) Câu 29 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A N(4; 2; 1) B Q(1; 2; −5) C M(−2; 1; −8) D P(3; 1; 3) Trang 2/5 Mã đề 001 Câu 30 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = 10 B I = C I = D I = −−→ Câu 31 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (1; 1; 3) B (−1; −1; −3) C (3; 3; −1) D (3; 1; 1) Câu 32 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 2 D F(x) = − e x + C A F(x) = − (2 − e x ) B F(x) = (e x + 5) C F(x) = e x + 2 2 2 Câu 33 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A x − y + z + = B x + y − z − = C 6x + y − z − = D x + y − z + = √ Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm Q D điểm P Câu 35 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 Câu 36 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ của√biểu thức T = |z + 1| + 2|z − 1| A P = 2016 B P = C max T = D P = −2016 Câu 37 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C 13 D Câu 38 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 = Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A B C D √ 2 z Câu 40 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B C D 2 √ Câu 41 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a2 + b2 + c2 + ab + bc + ca C a2 + b2 + c2 − ab − bc − ca D a + b + c Câu 42 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | Trang 3/5 Mã đề 001 Câu 43 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −16 C m = m = −10 D m = Câu 44 Chọn mệnh đề mệnh đề sau: R R A sin xdx = cos x + C B x dx =5 x + C C R e2x dx = e2x +C D R (2x + 1)2 dx = (2x + 1)3 + C Câu 45 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 400π 125π 250π 500π B C D A 9 Câu 46 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C D −4 Câu 47 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 48 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 27 25 23 A B C D 4 4 Câu 49 Chọn mệnh đề mệnh đề sau: A R3 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B R3 |x − 2x|dx = − C R3 (x − 2x)dx + R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − D R2 1 R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx 1 Câu 50 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001