Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Số nghiệm của phương trình 9x + 5 3x − 6 = 0 là A 0 B 2 C 4 D 1 Câu 2 Kế[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Số nghiệm phương trình x + 5.3 x − = A B C D 1 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số đồng biến R D Hàm số nghịch biến R + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A < m , B ∀m ∈ R C m < D −4 < m < Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu B 4πR3 C πR3 D πR3 A πR3 √ Câu Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA√′ = 3a Thể tích khối√lăng trụ cho là: D 3a3 A a3 B 3a3 C 3a3 R1 √3 7x + 1dx Câu Tính I = 20 21 60 45 A I = B I = C I = D I = 28 28 −x Câu Tìm tất giá trị tham số m để hàm số y = xe + mx đồng biến R A m > e2 B m > C m ≥ e−2 D m > 2e p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếu < x < π y > − 4π2 Câu Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) tiếp xúc mặt cầu (S ) B (P) cắt mặt cầu (S ) C (P) không cắt mặt cầu (S ) D (P) qua tâm mặt cầu (S ) Câu 10 Đường thẳng y = tiệm cận ngang đồ thị đây? 1+x −2x + 2x − B y = C y = A y = x+2 − 2x x−2 Câu 11 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A x5 + sin x + C B 5x5 + sin x + C C 5x5 − sin x + C D y = x+1 D x5 − sin x + C Câu 12 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A M(0 ; ; 2) B Q(4 ; ; 2) C N(1 ; ; 7) D P(4 ; −1 ; 3) Câu 13 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2020 B 2022 C 2019 D 2021 Trang 1/5 Mã đề 001 Câu 14 Tập nghiệm bất phương trình 52x+3 > −1 A ∅ B R C (−∞; −3) D (−3; +∞) Câu 15 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −8 B −6 C −4 D −2 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 16 Cho số phức zthỏa mãn i + tròn (C) √ Tính bán kính rcủa đường trịn (C) √ A r = B r = C r = D r = z2 Câu 17 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 11 B 13 C D Câu 18 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = + i C P = 2i D P = Câu 19 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ −1 B m ≥ m ≤ C −1 ≤ m ≤ D ≤ m ≤ − 2i (1 − i)(2 + i) + 2−i + 3i 29 11 B − C 13 13 √ Câu 20 Phần thực số phức z = A − 11 13 Câu 21 Tính mơ-đun số phức z√thỏa mãn z(2 − i) + 13i√= √ 34 34 A |z| = 34 B |z| = C |z| = 3 Câu 22 Với số phức z, ta có |z + 1|2 A z + z + B |z|2 + 2|z| + C z2 + 2z + D 29 13 D |z| = 34 D z · z + z + z + Câu 23 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2k B A = 2ki C A = D A = Câu 24 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B −3 + 2i C −3 − 2i D 11 + 2i Câu 25 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 B 21008 C −22016 D −21008 + Câu 26 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? A Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Rb B a k · f (x) = k[F(b) − F(a)] b Rb C a f (2x + 3) = F(2x + 3) a Ra D b f (x) = F(b) − F(a) Câu 27 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) + C = f (x) B F ′ (x) = f (x) C F(x) = f ′ (x) + C D F(x) = f ′ (x) Câu 28 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; 0; −2) B C(1; 4; 4) C C(1; 0; 2) D C(−1; −4; 4) Trang 2/5 Mã đề 001 Câu 29 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z + 15 = B x − 2y + 2z − 15 = C x + 2y + 2z − 15 = D x + 2y + 2z + 15 = Câu 30 Tìm nguyên hàm hàm số f (x) = √ 2x + R R 1√ A f (x)dx = 2x + + C B f (x)dx = √ + C 2x + R R √ √ C f (x) = 2x + + C D f (x)dx = 2x + + C R4 R4 R3 Câu 31 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D −−→ Câu 32 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (3; 3; −1) B (1; 1; 3) C (−1; −1; −3) D (3; 1; 1) Câu 33 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A x − y + z + = B x + y − z + = C 6x + y − z − = D x + y − z − = Câu 34 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = + i D A = Câu 35 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i D |w|min = A |w|min = B |w|min = C |w|min = 2 Câu 36 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ của√biểu thức T = |z + 1| + 2|z − 1| D P = A P = −2016 B P = 2016 C max T = Câu 37 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 B T = 13 D T = 13 C T = A T = 3 Câu 38 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 39 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm Q D điểm S Câu 40 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = C P = −2016 D P = 2016 √ Giá trị lớn biểu thức Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 √ Câu 42 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B a2 + b2 + c2 − ab − bc − ca C D a + b + c Trang 3/5 Mã đề 001 Câu 43 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n A log2 2250 = 2mn + n + n B log2 2250 = 3mn + n + n C log2 2250 = 2mn + n + n D log2 2250 = 2mn + 2n + m Câu 44 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B − ln C D ln Câu 45 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vuông góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 B C D A 16 Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 A M( ; ; ) 3 21 B M( ; ; ) 3 11 17 C M( ; ; ) 3 10 31 D M( ; ; ) 3 Câu 47 Chọn mệnh đề mệnh đề sau: A Nếu a < a x > ay ⇔ x < y B Nếu a > a x > ay ⇔ x < y C Nếu a > a x = ay ⇔ x = y D Nếu a > a x > ay ⇔ x > y Câu 48 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 49 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 Câu 50 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001