Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho số thực dươngm Tính I = m∫ 0 dx x2 + 3x + 2 theo m? A I = ln( m + 2[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Rm dx theo m? x + 3x + m+2 m+1 m+2 2m + A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+1 m+2 2m + m+2 Câu Hàm số sau cực trị? A y = x2 B y = x3 − 6x2 + 12x − C y = cos x D y = x4 + 3x2 + Câu Cho số thực dươngm Tính I = Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ A R = 21 B R = C R = D R = 29 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 450 B 300 C 600 D 360 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B πR3 C 2πR3 D 6πR3 Câu Cho < a , 1; < x , Đẳng thức sau sai? A aloga x = x B loga x2 = 2loga x D loga (x − 2)2 = 2loga (x − 2) C loga2 x = loga x Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a 3a a 5a A √ C √ B D 5 Câu Cho hình S ABCcó cạnh đáy a cạnh bên√bằng b Thể tích khối chóp là: √ chóp 3a b 3ab2 A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 √ Câu Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 7; 3, 9)· B (3, 5; 3, 7)· C (3, 1; 3, 3)· D (3, 3; 3, 5)· Câu 10 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a A a B 2a C D 2 Câu 11 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A 103 B A310 C 310 D C10 R Câu 12 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x A f (x) = − B f (x) = −3 cos 3x C f (x) = D f (x) = cos 3x 3 Trang 1/5 Mã đề 001 x−2 y−6 z+2 Câu 13 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ C √ A √ B √ D 10 10 53 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A H(−2; −1; 3) B I(−1; −2; 3) C K(3; 0; 15) D J(−3; 2; 7) Câu 15 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B −2 C −3 D Câu 16 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 B P = C P = D P = A P = 220 14 55 Câu 17 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B |z2 | = |z|2 C z + z = 2bi D z − z = 2a Câu 18 Tìm số phức liên hợp số phức z = i(3i + 1) A z = − i B z = −3 − i C z = −3 + i D z = + i Câu 19 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D 2(1 + 2i) Câu 20 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C 13 D Câu 21 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B −3 + 2i C 11 + 2i D −3 − 2i Câu 22 Cho hai √ số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = Câu 23 √ thức |z1 + z1 z2 | √ √ Cho số phức z1 = +√2i, z2 = − i Giá trị biểu A 30 B 130 C 10 D 10 Câu 24 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 + C −22016 D −21008 Câu 25 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ −1 B m ≥ m ≤ C ≤ m ≤ D −1 ≤ m ≤ √ Câu 26 Tìm hàm số F(x) khơng ngun hàm hàm số f (x) = sin2x A F(x) = − cos2x B F(x) = −cos2x C F(x) = −cos2 x D F(x) = sin2 x −−→ Câu 27 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (−1; −1; −3) B (3; 1; 1) C (1; 1; 3) D (3; 3; −1) Trang 2/5 Mã đề 001 Câu 28 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = B I = C I = D I = 10 R2 Câu 29 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A B −2024 C 2025 D 2024 Câu 30 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x + 2y + z − = B 3x − 2y + z − 12 = C 3x − 2y + z + = D 3x − 2y + z − = Câu 31 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = cos(2023x) C f (x) = 2023cos(2023x) B f (x) = − cos(2023x) 2023 D f (x) = −2023cos(2023x) Câu 32 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A x − y + z + = B 6x + y − z − = C x + y − z − = D x + y − z + = R2 Câu 33 Tích phân I = (2x − 1) có giá trị bằng: A B C D + z + z2 số thực Câu 34 Cho số phức z (không phải số thực, số ảo) thỏa mãn − z + z2 Khi mệnh đề sau đúng? 5 B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 z Câu 35 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C D 2 √ √ √ 42 √ + 3i+ 15 Mệnh đề đúng? Câu 36 Cho số phức z thỏa mãn − 5i |z| = z A < |z| < B < |z| < C < |z| < D < |z| < 2 Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp sau đây? ! ! ! 9 B ; C 0; D ; +∞ A ; 4 4 Câu 38 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = 26 B P = + C P = 34 + D P = z Câu 39 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 A B C D Câu 40 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A max T = B P = 2016 C P = −2016 D P = Trang 3/5 Mã đề 001 Câu 41 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a + 2b √ √ √ √ A B 15 C 10 D √ điểm A hình vẽ bên điểm Câu 42 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q Câu 43 Biết bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm M π R2 C điểm P D điểm N C − ln D sin 2xdx = ea Khi giá trị a là: A B ln Câu 44 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a > a x > ay ⇔ x > y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x = ay ⇔ x = y x2 + mx + đạt cực tiểu điểm x = x+1 C m = −1 D m = Câu 45 Tìm tất giá trị tham số m để hàm số y = B m = A Khơng có m Câu 46 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B R3 |x2 − 2x|dx = − C D R3 R2 (x2 − 2x)dx + (x2 − 2x)dx R2 |x2 − 2x|dx = (x2 − 2x)dx + R3 1 R3 R2 R3 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx (x2 − 2x)dx d Câu 47 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C 2a D a Câu 48 Biết a, b ∈ Z cho A R B (x + 1)e2x dx = ( ax + b 2x )e + C Khi giá trị a + b là: C D Câu 49 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = B R = 14 C R = D R = 15 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = − 2t x = −1 + 2t x = + 2t x = + 2t y = + 3t y = −2 + 3t y = −2 − 3t y = −2 + 3t A B C D z = − 5t z = − 5t z = + 5t z = −4 − 5t Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001