1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán có đáp án (486)

13 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 1,46 MB

Nội dung

ĐỀ MẪU CĨ ĐÁP ÁN ƠN TẬP KIẾN THỨC TỐN 12 Thời gian làm bài: 40 phút (Không kể thời gian giao đề) - Họ tên thí sinh: Số báo danh: Mã Đề: 049 Câu Gọi bán kính đáy chiều cao hình nón Kí hiệu khối nón thể tích khối cầu nội tiếp hình nón Khi A Đáp án đúng: D B Giải thích chi tiết: Gọi thay đổi, tìm giá trị bé tỉ số C Gọi C D bán kính đáy chiều cao hình nón Kí hiệu thể tích khối nón thể tích khối cầu nội tiếp hình nón Khi A B Lời giải thể tích thay đổi, tìm giá trị bé tỉ số D mặt phẳng qua trục hình nón đường trịn lớn, đường trịn nội tiếp tam giác cân cắt hình nón theo tam giác cân Khi đó, bán kính , cắt mặt cầu theo khối cầu nội tiếp hình nón tính cơng thức , Xét Vì nên xét dấu Ta có , ta cần xét dấu Dễ thấy Vậy hàm tăng khoảng Với nên , đồng thời Vậy giá trị nhỏ suy Câu Cho tứ diện tam giác có cạnh Tính diện tích xung quanh Hình nón có đỉnh có đáy đường trịn ngoại tiếp A B C Đáp án đúng: D D Giải thích chi tiết: Gọi bán kính đường trịn ngoại tiếp tam giác Ta có ; Câu Giá trị lớn hàm số A Đáp án đúng: A đoạn B Câu Lăng trụ đứng có đáy hình vng Khi thể tích lăng trụ A Đáp án đúng: A B C bằng: D tam giác vng C Mặt bên D Giải thích chi tiết: Mặt bên hình vng nên Đáy tam giác vng ta có: Thể tích lăng trụ là: Câu Cho hình trụ có chiều cao Trên đường trịn đáy thứ hình trụ lấy hai điểm đường trịn đáy thứ hai hình trụ lấy hai điểm tạo với đáy hình trụ góc A Đáp án đúng: A cho phẳng A Lời giải B C tạo với đáy hình trụ góc C D Trên đường trịn đáy thứ hình trụ lấy hai ; đường trịn đáy thứ hai hình trụ lấy hai điểm B hình vng mặt phẳng Thể tích khối trụ cho bằng: Giải thích chi tiết: Cho hình trụ có chiều cao điểm ; cho hình vng mặt Thể tích khối trụ cho bằng: D Giả sử tâm đáy thứ đáy thứ hai hình trụ Gọi hình chiếu đường trịn đáy thứ hai hình trụ Ta có: , tức ; đường kính đáy thứ hai hình trụ ; vng cân có , Vậy thể tích khối trụ bằng: Câu Cho số thực dương khác Mệnh đề với số thực dương x, y? A C Đáp án đúng: C Câu B Cho hình lăng trụ D có đáy tam giác cạnh góc điểm mặt phẳng trùng với trọng tâm Hình chiếu vng tam giác Tính thể tích khối lăng trụ cho A B C Đáp án đúng: C D Giải thích chi tiết: Cho hình lăng trụ có đáy tam giác cạnh Hình chiếu vng góc điểm mặt phẳng Tính thể tích khối lăng trụ cho A Lời giải B NMGC'B'A'CBAGọi Tam giác vng Diện tích tam giác D trung điểm Theo giả thiết, ta có cạnh C trùng với trọng tâm tam giác Khi trọng tâm Tam giác nên suy , có Câu Trong không gian A , mặt phẳng sau nhận C Đáp án đúng: C B C Mặt phẳng có phương trình pháp tuyến mặt phẳng B B (với Gọi C Giá trị D D là B D tập hợp tất giá trị tham số để đường thẳng với đồ thị tạo thành hai miền kín có diện tích thỏa mãn Số phần A Đáp án đúng: A Giải thích chi tiết: Gọi với đồ thị vectơ hàm số tử tập nên ) qua điểm C Câu 11 Tập nghiệm T bất phương trình C Đáp án đúng: A Câu 12 có vectơ pháp tuyến Câu 10 Thể tích khối cầu có bán kính A vectơ pháp tuyến? D Câu Biết tiệm cận ngang đồ thị hàm số A Đáp án đúng: D , mặt phẳng sau nhận B A Đáp án đúng: A D Giải thích chi tiết: Trong khơng gian A Lời giải vectơ pháp tuyến? B tập hợp tất giá trị tham số hàm số Số phần tử tập C D để đường thẳng tạo thành hai miền kín có diện tích thỏa mãn A B Lời giải C D Điều kiện để đồ thị có hai điểm cực trị Khi có hai nghiệm phân biệt Đường thẳng song song với trục hoành cắt đồ thị tạo thành hai miền kín có diện tích thỏa mãn nên Ta có: Khi ta có phương trình: hàm số qua điểm uốn đồ thị Phương trình có nghiệm phân biệt có nghiệm thỏa mãn điều kiện nên tập Câu 13 Hình tứ diện có số mặt phẳng đối xứng là: A mặt phẳng B mặt phẳng C mặt phẳng D mặt phẳng Đáp án đúng: A Câu 14 Trong không gian hai điểm , , cho hai mặt phẳng B Giải thích chi tiết: Nhận xét: Xét Ta có Suy C ; có phần tử , Xét hai điểm thay đổi A Đáp án đúng: C cho Giá trị nhỏ D vectơ pháp tuyến hai mặt phẳng Ta có Gọi , suy điểm cho Khi Do Xét với Đường thẳng qua Suy hình chiếu Gọi Ta thấy và vng góc với điểm đối xứng với qua , suy có phương trình là: Ta có Đẳng thức xảy nằm phía so với trung điểm , suy giao diểm Vậy giá trị nhỏ Câu 15 Tính bán kính mặt cầu ngoại tiếp hình chóp tứ giác có cạnh đáy A Đáp án đúng: A B C , cạnh bên D Câu 16 Cho số thực dương khác 1, b số thực dương Mệnh đề đúng? A C Đáp án đúng: D Câu 17 Với B D số thực dương tùy, mệnh đề đúng? A B C Đáp án đúng: A Câu 18 Đồ thị sau hàm số nào? A C Đáp án đúng: C Câu 19 Cho hàm số D B D có bảng biến thiên sau Tiệm cận ngang đồ thị hàm số cho đường thẳng có phương trình: A Đáp án đúng: A B Giải thích chi tiết: Cho hàm số C D có bảng biến thiên sau Tiệm cận ngang đồ thị hàm số cho đường thẳng có phương trình: A B C D Câu 20 Ông gửi 100 triệu đồng vào ngân hàng theo hình thức lãi suất kép (đến kì hạn mà người gởi khơng rút tiền lãi tiền lãi tính vào tiền vốn kì tiếp theo) với lãi suất 7% năm (chỉ tính lãi gởi đủ năm, giả sử lãi suất không đổi) Nếu muốn có số tiền 150 triệu đồng ngân hàng ơng A phải gởi năm? A năm Đáp án đúng: D B Câu 21 Cho khối chóp Tính góc năm có C , tam giác mặt phẳng năm D vuông , Hàm số cho đồng biến khoảng đây? A (−1 ;1 ) C (−∞;1 ) Đáp án đúng: B A Đáp án đúng: A liên tục B , , A B C Đáp án đúng: C Câu 22 Cho hàm số y=f ( x ) có bảng biến thiên sau Mệnh đề đúng? Câu 23 Cho hàm số năm D B ( ;+∞ ) D (−1 ;+∞ ) thỏa mãn Tính tích phân C D Giải thích chi tiết: (THPT SGD Cà Mau 21-22) Cho hàm số Tính tích phân A Lời giải B C liên tục thỏa mãn D Đặt Câu 24 Một thùng đầy nước tạo thành từ việc cắt mặt xung quanh hình nón mặt phẳng vng góc với trục hình nón Miệng thùng đường trịn có bán kính bốn lần bán kính mặt đáy thùng Người ta thả vào khối cầu có đường kính chiều cao thùng nước đo thể tích nước tràn Biết khối cầu tiếp xúc với mặt thùng nửa khối cầu chìm nước Tính thể tích nước cịn lại? A Đáp án đúng: A B Câu 25 Trong không gian với hệ trục tọa độ , thuộc trục hoành, thẳng mặt phẳng mệnh đề sau đúng? A C Đáp án đúng: C C D , cho hình chóp thuộc trục tung, đáy gấp hai lần góc gốc tọa độ, hình chữ nhật Biết góc đường , góc mặt phẳng B D Khi Giải thích chi tiết: 10 Nhận xét Mà Từ , Mặt khác ta có tam diện vng nên Từ suy Ta có Câu 26 Cho A 18 Đáp án đúng: B , biểu thức B 24 C 12 Câu 27 Cho hàm số tham số để hàm số B Giải thích chi tiết: Ta có Suy Tập tất giá trị đồng biến A Đáp án đúng: C D C D , , Và Dễ thấy , Do Hàm số , đồng biến , , 11 , Vậy Câu 28 , thỏa yêu cầu toán Cho hàm số liên tục Gọi hai đường thẳng A Diện tích miền C Đáp án đúng: A miền phẳng giới hạn đồ thị hàm số tính theo cơng thức nào? B D Câu 29 Điểm sau không thuộc mặt phẳng A Đáp án đúng: C Câu 30 B Cho hàm số C Tập hợp tất giá trị A Đáp án đúng: D B để hàm số đồng biến khoảng Giải thích chi tiết: Cho hàm số D C Tập hợp tất giá trị D để hàm số đồng biến khoảng A Lời giải TXĐ: B Ta có C D Hàm số đồng biến Câu 31 Nếu x bằng: A B C Đáp án đúng: B Câu 32 Cho hàm số y = x3 + 3x + Mệnh đề ? A Hàm số nghịch biến khoảng (− ∞ ;+ ∞) B Hàm số đồng biến khoảng (− ∞; 0) nghịch biến khoảng (0 ;+ ∞) C Hàm số nghịch biến khoảng (− ∞; 0) đồng biến khoảng (0 ;+ ∞) D Hàm số đồng biến khoảng (− ∞ ;+ ∞) D 12 Đáp án đúng: D Câu 33 Cho A Đáp án đúng: D B C D Giải thích chi tiết: Ta có Câu 34 Xét đặt A B C Đáp án đúng: B D Giải thích chi tiết: Đặt Đổi cận: Khi đó: Câu 35 Trong không gian tuyến mặt phẳng A C Đáp án đúng: C , cho mặt phẳng Vectơ vectơ pháp ? Giải thích chi tiết: Ta có : : Vậy vectơ pháp tuyến mặt phẳng B D có vectơ pháp tuyến HẾT - 13

Ngày đăng: 09/04/2023, 16:57

w