LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đạo hàm của hàm số y = log√2 ∣∣∣∣∣3x − 1 ∣∣∣∣∣ là A y′ = 6 (3x − 1) ln 2 B y′ = 2[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đạo hàm hàm số y = log √2 3x − là: A y′ = (3x − 1) ln B y′ = (3x − 1) ln 2 C y′ = 3x − ln D y′ = 3x − ln Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(1; 1; 2) B I(0; 1; 2) C I(0; −1; 2) D I(0; 1; −2) √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 450 B 300 C 600 D 1200 √ x Câu Tìm nghiệm phương trình x = ( 3) A x = B x = C x = D x = −1 Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 C Không tồn m D m < A m < B < m < 3 Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m > B m ≥ C m ≥ D m ≥ −1 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A B C D − 6 Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 2π B 4π C π D 3π Câu Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B m < −1 C m > D −1 ≤ m < R3 Câu 10 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị [1 + f (x)]dx 26 A 32 B C 10 Câu 11 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−1; 0) B (−∞; 1) C (1; +∞) D D (0; 1) x−1 y+2 z = = không qua điểm đây? −1 B (1; −2; 0) C (3; −1; −1) D A(−1; 2; 0) Câu 12 Đường thẳng (∆) : A (−1; −3; 1) Câu 13 Tính đạo hàm hàm số y = 2023 x A y′ = x.2023 x−1 B y′ = 2023 x ln x C y′ = 2023 x D y′ = 2023 x ln 2023 Trang 1/5 Mã đề 001 Câu 14 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 A M(− ; ; −1) B M(− ; ; −1) C M( ; ; −1) D M(− ; ; 2) 4 4 √ Câu 15 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vuông góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ B d = a C d = 2a D d = a A d = a Câu 16 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = B S = −5 C S = D S = −6 Câu 17 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 18 Tập nghiệm bất phương trình x+1 < A (1; +∞) B (−∞; 1] C (−∞; 1) D [1; +∞) Câu 19 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 90◦ C 60◦ D 30◦ Câu 20 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A 17 B C D 15 Câu 21 Tích tất nghiệm phương trình ln2 x + ln x − = B e12 C −2 D −3 A e13 Câu 22 Trong không gian Oxyz, cho đường thẳng d : x−1 = y−2 = −1 A N(2; 1; 2) B M(2; −1; −2) C Q(1; 2; −3) Câu 23 Phần ảo số phức z = − 3i A −2 B −3 C Câu 24 Cho số phức z = + 9i, phần thực số phức z2 A B 85 C −77 z+3 −2 Điểm thuộc d? D P(1; 2; 3) D D 36 Câu 25 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ A a B 33 a C 2a D 22 a Câu 26 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C D −1 Câu 27 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A −3 B −2 C D Câu 28 Nếu A R4 −1 R4 R4 f (x) = −1 g(x) = −1 [ f (x) + g(x)] B −1 C D Câu 29 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (6; 7) B (4; 5) C (3; 4) D (2; 3) Câu 30 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n1 = (−1; 1; 1) B → n3 = (1; 1; 1) C → n2 = (1; −1; 1) D → n4 = (1; 1; −1) Trang 2/5 Mã đề 001 Câu 31 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 49 B 89 C 90 D 48 ax + b Câu 32 Cho hàm số y = có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (2; 0) B (−2; 0) C (0; −2) D (0; 2) Câu 33 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (2; 4; 6) B (1; 2; 3) C (−2; −4; −6) D (−1; −2; −3) Câu 34 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x + y − = C x − y + = D x − y + = Câu 35 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = C P = B P = D P = 2 Câu 36 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 √ mặt phẳng phức Khi đó√độ dài MN B MN = C MN = D MN = A MN = Câu 37 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 B √ C A √ D √ 13 z−z =2? Câu 38 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một Parabol B Một đường tròn C Một đường thẳng D Một Elip Câu 39 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 4π B 3π C 2π D π Câu 40 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A 10 B C D z+i+1 Câu 41 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một đường thẳng B Một Elip C Một Parabol D Một đường tròn Câu 42 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B 4π C 2π D π cos x π Câu 43 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 3π 6π A ln + B C ln + D ln + 5 5 d Câu 44 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ (ABC) √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng A a B 2a C a D a Trang 3/5 Mã đề 001 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C −4 D Câu 46 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 47 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = x2 Câu 48 Tính tích tất nghiệm phương trình (log2 (4x)) + log2 ( ) = 8 A 32 B 128 C D 64 Câu 49 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 27 B 23 C 25 D 29 √ 2x − x2 + Câu 50 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001