1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (578)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 119,72 KB

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y = 0; x = 2 Tính thể tích V củ[.]

LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π A V = B V = C V = D V = 5 √ sin 2x Câu R bằng? √ Giá trị lớn hàm số y = ( π) A π B C π D Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ C m ≥ −1 D m > Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 52 C yCD = 36 D yCD = ; y = 0; x = 0; x = Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln − B ln + C − ln − D − ln 2 2 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 2; 0) B A(1; 0; 3) C A(0; 2; 3) D A(0; 0; 3) Câu Tìm đạo hàm hàm số: y = (x + 1) 1 1 3 − 2 A (2x) B x C 3x(x + 1) D (x + 1) Câu 10 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh hình trụ A 5πa2 B 2πa2 C 4πa2 D 6πa2 Câu 11 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 A M(− ; ; 2) B M(− ; ; −1) C M( ; ; −1) D M(− ; ; −1) 4 4 Câu 12 Trong số phức z thỏa mãn z − i = z¯ − − 3i Hãy tìm z có mơđun nhỏ 6 27 27 6 27 A z = − i B z = − + i C z = + i D z = − − i 5 5 5 5 Trang 1/5 Mã đề 001 √ Câu 13 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x − 4)2 + (y + 8)2 = √5 C (x + 4)2 + (y − 8)2 = B (x − 4)2 + (y + 8)2 = 20 D (x + 4)2 + (y − 8)2 = 20 Câu 14 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(5; −2) B M(−2; 5) C M(−5; −2) D M(5; 2) Câu 15 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B −4 C 2i D π R4 Câu 16 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 15π π2 + 16π − 16 B C 16 16 i R2 R2h Câu 17 Nếu f (x)dx = 21 f (x) − dx A B C −2 π2 − A 16 Câu 18 Tiệm cận ngang đồ thị hàm số y = B y = 13 A y = − 32 π2 + 16π − D 16 D 2x+1 3x−1 đường thẳng có phương trình: C y = 23 D y = − 13 Câu 19 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 20 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho B 2πrl C πrl D 13 πr2 l A 32 πrl2 Câu 21 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A 15 B C 17 D Câu 22 Cho số phức z = + 9i, phần thực số phức z2 A 85 B C 36 D −77 Câu 23 Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ |z| Giá trị M + m2√bằng A 28 B 11 + √ D 18 + C 14 Câu 24 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 210 B 225 C 105 D 30 Câu 25 Trong không gian Oxyz, cho đường thẳng d : x−1 = y−2 = −1 A M(2; −1; −2) B N(2; 1; 2) C P(1; 2; 3) z+3 −2 Điểm thuộc d? D Q(1; 2; −3) Câu 26 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n1 = (−1; 1; 1) C → n3 = (1; 1; 1) D → n2 = (1; −1; 1) Câu 27 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường tròn Tâm đường trịn có tọa độ A (−2; 0) B (0; −2) C (0; 2) D (2; 0) Câu 28 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 A a B a C a D 2a3 Trang 2/5 Mã đề 001 Câu 29 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị ngun tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 30 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D 2 Câu 31 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = B d > R C d = R D d < R R4 R4 R4 Câu 32 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A −1 B C D Câu 33 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = − B y′ = C y′ = xln3 xln3 x D y′ = x Câu 34 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 2π B 3π C 4π D π z+i+1 số ảo? Câu 35 Tìm tập hợp điểm M biểu diễn số phức z cho w = z + z + 2i A Một đường tròn B Một đường thẳng C Một Elip D Một Parabol z−z =2? Câu 36 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường thẳng B Một Parabol C Một đường tròn D Một Elip Câu 37 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 25 15 A S = B S = C S = 4 D S = 1+i z 25 Câu 38 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Đường tròn B Parabol C Hai đường thẳng D Một đường thẳng Câu 39 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x − y + = C x − y + = D x + y − = √ Câu 40 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 41 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = C r = 20 D r = 22 Câu 42 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = 10 D max T = Câu 43 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + πR2 B S = 2πRl + 2πR2 C S = πRl + 2πR2 D S = πRh + πR2 Trang 3/5 Mã đề 001 Câu 44 Chọn mệnh đề mệnh đề sau: A R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B R3 R3 D R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx R3 R2 |x − 2x|dx = (x − 2x)dx + C |x − 2x|dx = − 2 R2 (x − 2x)dx + R3 (x2 − 2x)dx √ 2x − x2 + có số đường tiệm cận đứng là: Câu 45 Đồ thị hàm số y = x2 − A B C D Câu 46 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A B C 12 D Câu 47 Hàm số hàm số sau đồng biến R A y = x4 + 3x2 C y = B y = −x3 − x2 − 5x 4x + x+2 D y = x3 + 3x2 + 6x − Câu 48 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + n 2mn + n + C log2 2250 = n 2mn + 2n + m 3mn + n + D log2 2250 = n A log2 2250 = B log2 2250 = Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B −4 Câu 50 Biết a, b ∈ Z cho A R B (x + 1)e2x dx = ( C D ax + b 2x )e + C Khi giá trị a + b là: C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 05/04/2023, 19:20

w