LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lập phương ABCD A′B′C′D′ có cạnh bằng a Tính thể tích khối chóp D ABC′D′[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = B f (−1) = −5 C f (−1) = −3 D f (−1) = −1 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = −7 D m = Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = C yCD = 52 R Câu Tính nguyên hàm cos 3xdx 1 B sin 3x + C C −3 sin 3x + C A − sin 3x + C 3 D yCD = −2 D sin 3x + C Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 2 B (m ) C (m ) D (m2 ) A 3(m ) √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 300 B 1200 C 600 D 450 Câu Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 A M(− ; ; −1) B M( ; ; −1) C M(− ; ; 2) D M(− ; ; −1) 4 4 y z−2 x+1 Câu 10 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : = = Viết 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : y − z + = B (P) : y + z − = C (P) : x − 2y + = D (P) : x − 2z + = − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 11 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ √ → − → → − → − → − − −a = A b ⊥ a B c = C b ⊥ c D → Câu 12 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại C Hàm số đạt cực đại B Hàm số đạt cực đại D Hàm số đạt cực đại Trang 1/5 Mã đề 001 Câu 13 Biết R3 A f (x)dx = R3 g(x)dx = Khi B R3 [ f (x) + g(x)]dx C −2 D Câu 14 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 B C D −16 A 16 R Câu 15 6x5 dxbằng A 30x4 + C B 6x6 + C C x6 + C D x6 + C Câu 16 Đồ thị hàm số y = x3 − 3x2 − 2x cắt trục hoành điểm? A B C D Câu 17 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (0; 2) B (−∞; 1) C (1; 3) D (3; +∞) Câu 18 Cho khối nón có đình S , chiều cao thể tích 800π Gọi A B hai điểm thuộc đường√ tròn đáy cho AB = 12, khoảng cách từ tâm của√đường tròn đáy đến mặt phẳng (S AB) A B 24 C D 245 Câu 19 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu 20 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 90◦ B 60◦ C 30◦ D 45◦ Câu 21 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ B y′ = πxπ−1 C y′ = π1 xπ−1 D y′ = xπ−1 Câu 22 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: A y′ = 1x B y′ = − x ln1 C y′ = lnx3 D y′ = x ln Câu 23 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 A 16π B 16π C 16 D 15 15 9 Câu 24 Phần ảo số phức z = − 3i A B −3 C D −2 Câu 25 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (2; +∞) B (1; +∞) C (1; 2) D (−∞; 1) Câu 26 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; +∞) B (−∞; 1) C (1; 2) D (2; +∞) R4 R4 R4 Câu 27 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C −1 D Câu 28 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 11 + B 14 C 28 D 18 + Trang 2/5 Mã đề 001 Câu 29 Cho số phức z = + 9i, phần thực số phức z2 A 36 B −77 C D 85 Câu 30 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = R B d < R C d > R D d = Câu 31 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A B C 11 D 12 Câu 32 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 A a B a C a D 2a3 Câu 33 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 30 B 225 C 105 D 210 z − z = ? Câu 34 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một Elip B Một đường thẳng C Một Parabol D Một đường tròn √ Câu 35 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ B |z| = 33 C |z| = D |z| = 50 A |z| = 10 Câu 36 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π B 25π C D 5π A z Câu 37 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác vuông B Tam giác OAB tam giác nhọn C Tam giác OAB tam giác D Tam giác OAB tam giác cân √ Câu 38 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 39 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 trên√mặt phẳng phức Khi đó√ độ dài MN B MN = C MN = D MN = A MN = Câu 40 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B 10 C D Câu 41 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x − y + = D x + y − = −2 − 3i z + = Câu 42 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = 3x Câu 43 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A Không tồn m B m = −2 C m = D m = Trang 3/5 Mã đề 001 Câu 44 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = 2πRl + 2πR2 C S = πRl + πR2 D S = πRl + 2πR2 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 46 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A B C 12 D √ Câu 47 Tính đạo hàm hàm số y = log4 x2 − A y′ = (x2 x − 1) ln B y′ = (x2 x − 1)log4 e C y′ = 2(x2 x − 1) ln D y′ = √ x2 − ln Câu 48 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (3; 5) C (1; 5) D (−3; 0) x2 Câu 49 Tính tích tất nghiệm phương trình (log2 (4x)) + log2 ( ) = 8 A 32 B 64 C D 128 Câu 50 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −2x4 + 4x2 B y = x3 − 3x2 C y = −x4 + 2x2 D y = −x4 + 2x2 + Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001