LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọ[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(0; −1; 2) C I(0; 1; −2) D I(1; 1; 2) 2x + 2017 (1) Mệnh đề đúng? Câu Cho hàm số y = x + A Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = tiệm cận đứng B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = D Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C a D 2 x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x + y + 2z = B (P) : x − 2y − = C (P) : x − y − 2z = D (P) : x − y + 2z = Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−3; 1) B Hàm số nghịch biến khoảng (1; +∞) C Hàm số nghịch biến khoảng (−∞; −3) D Hàm số đồng biến khoảng (−3; 1) Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Cho a > a , Giá trị alog A B √ a bằng? C D √ Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(1; 2; 0) C A(0; 2; 3) D A(0; 0; 3) Câu Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 A B −16 C D 16 Câu 10 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x sin 3x A cos 3xdx = + C B cos 3xdx = − + C 3 R R C cos 3xdx = sin 3x + C D cos 3xdx = sin 3x + C Trang 1/5 Mã đề 001 Câu 11 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; 2; 3); R = B I(−1; 2; −3); R = C I(1; −2; 3); R = D I(1; 2; −3); R = Câu 12 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(−2; −4) B M(1; −2) C x = D x = −2 Câu 13 Đường cong hình bên đồ thị hàm số đây? A y = −x3 + 3x2 + B y = −x4 + 2x2 + C y = x4 − 2x2 + D y = x3 − 3x2 + Câu 14 Tính đạo hàm hàm số y = 2023 x A y′ = 2023 x ln 2023 B y′ = 2023 x ln x C y′ = x.2023 x−1 D y′ = 2023 x √ Câu 15 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vuông góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ C d = a D d = a A d = 2a B d = a Câu 16 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 1) −n = (−2; 3; 4) −n = (2; −3; 4) −n = (2; 3; −4) A → B → C → D → Câu 17 Trong không gian Oxyz, cho đường thẳng d : x−1 = y−2 = −1 A P(1; 2; 3) B Q(1; 2; −3) C N(2; 1; 2) z+3 −2 Điểm thuộc d? D M(2; −1; −2) Câu 18 Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B C D 12 Câu 19 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) B 52 C 34 D 12 A 14 Câu 20 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: B y′ = − x ln1 C y′ = 1x A y′ = x ln1 D y′ = ln x Câu 21 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (0; 2) B (−∞; 1) C (3; +∞) D (1; 3) Câu 22 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C D −1 Câu 23 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A 13 πr2 l B πrl C 23 πrl2 D 2πrl −16 Câu 24 Có số nguyên x thỏa mãn log3 x343 < log7 A 186 B 184 C 92 x2 −16 ? 27 D 193 Câu 25 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D 2x + Câu 26 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 2 A y = B y = C y = − D y = − 3 3 ′ Câu 27 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D 2 Trang 2/5 Mã đề 001 R dx = F(x) + C Khẳng định đúng? x A F ′ (x) = lnx B F ′ (x) = − C F ′ (x) = x x Câu 28 Cho Câu 29 Tập nghiệm bất phương trình x+1 < A (−∞; 1] B (1; +∞) C (−∞; 1) D F ′ (x) = x D [1; +∞) Câu 30 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (6; 7) C (7; −6) D (7; 6) Câu 31 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 A B C D 2 Câu 32 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C −1 D Câu 33 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = sinx + x + C B f (x) = sinx + + C 2 R R x C f (x) = −sinx + x2 + C D f (x) = −sinx + + C Câu 34 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 22 C r = 20 D r = Câu 35 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x − y + = C x + y − = D x + y − = Câu 36 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 z−z =2? Câu 37 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường tròn B Một Parabol C Một Elip D Một đường thẳng Câu 38 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 z+i+1 Câu 39 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một đường thẳng B Một Elip C Một đường tròn D Một Parabol Câu 40 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B C √ D √ 13 Câu 41 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi độ dài MN √ √ A MN = B MN = C MN = D MN = Trang 3/5 Mã đề 001 Câu 42 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B 2π C π D 4π Câu 43 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ B 3a3 C 4a3 D 9a3 A 6a3 Câu 44 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (1; 5) C (3; 5) D (−3; 0) Câu 45 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 46 Trong khơng gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) A 2→ B 2→ −u + 3→ −v = (3; 14; 16) C 2→ −u + 3→ −v = (1; 13; 16) D 2→ Câu 47 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = C m = m = −16 D m = m = −10 Câu 48 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Câu 49 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 15 πa2 17 πa2 17 B C D A 4 √ 2x − x2 + có số đường tiệm cận đứng là: Câu 50 Đồ thị hàm số y = x2 − A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001