Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2;−1), M(2; 4; 1), N([.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; 21; 21) B C(6; −17; 21) C C(8; ; 19) D C(20; 15; 7) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + 2ty = + tz = C x = + 2ty = + tz = − 4t D x = + ty = + 2tz = Câu Kết đúng? R sin3 x + C A sin2 x cos x = R C sin2 x cos x = −cos2 x sin x + C B R sin2 x cos x = cos2 x sin x + C D R sin2 x cos x = − sin3 x + C Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường hypebol B Đường tròn C Đường elip D Đường parabol Câu Cho < a , 1; < x , Đẳng thức sau sai? A aloga x = x B loga2 x = loga x C loga x2 = 2loga x D loga (x − 2)2 = 2loga (x − 2) Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A −6 B C D Câu Cho hình√chóp S ABCcó cạnh đáy a cạnh bên√bằng b Thể tích khối chóp là: a2 3b2 − a2 3ab2 A VS ABC = B VS ABC = 12 q 12 √ √ a2 b2 − 3a2 3a b C VS ABC = D VS ABC = 12 12 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = − B y = +1− ln ln 5 ln ln x x C y = −1+ D y = + ln ln 5 ln R2 R2 Câu Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A B −9 C −1 D − → Câu 10 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 60 B 90 C 45◦ D 30◦ Trang 1/5 Mã đề 001 Câu 11 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + ty = tz = − t B x = + 2ty = 2tz = + t C x = + ty = tz = + t D x = − ty = tz = + t Câu 12 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−3; 0) B (0; −3) C (−1; −4) D (1; −4) y−6 z+2 x−2 = = Câu 13 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ B 10 C √ D √ A √ 10 53 R6 R6 R6 Câu 14 Nếu f (x) = g(x) = −4 ( f (x) + g(x)) A −6 B −2 C D Câu 15 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2019 B 2020 C 2022 D 2021 Câu 16 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 64 B 56 C 48 D 76 Câu 17 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D 2017 (1 + i) Câu 18 Số phức z = có phần thực phần ảo đơn vị? 21008 i A B 21008 C D Câu 19 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z + z = 2bi B |z2 | = |z|2 C z − z = 2a D z · z = a2 − b2 Câu 20 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2k C A = D A = 2ki Câu 21 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −7 B C D −3 √ Câu 22 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ B m ≥ m ≤ −1 C ≤ m ≤ D −1 ≤ m ≤ 4(−3 + i) (3 − i)2 Câu 23 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ √ − 2i A |w| = 48 B |w| = C |w| = 85 D |w| = 25 1 Câu 24 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 31 B −31 C −17 D 17 Trang 2/5 Mã đề 001 Câu 25 Cho số phức z thỏa mãn (2 + i)z + A B 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + 1+i C D 13 Câu 26 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (1; 3) B (0; 2) C (−∞; 1) D (3; +∞) Câu 27 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B C D 12 Câu 28 Đồ thị hàm số có dạng đường cong hình bên? x−3 D y = x3 − 3x − A y = x2 − 4x + B y = x4 − 3x2 + C y = x−1 Câu 29 Phần ảo số phức z = − 3i A −3 B C −2 D Câu 30 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 2) C (1; 0) D (−1; 2) Câu 31 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; 2; 3) B (1; −2; 3) C (1; 2; −3) D (−1; −2; −3) Câu 32 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 D A B C Câu 33 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 30◦ B 60◦ C 45◦ D 90◦ Câu 34 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A Phần thực z số âm B |z| = C z số ảo D z số thực không dương Câu 35 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = −2016 B P = 2016 C P = D P = = Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A B C D √ 2 Câu 37 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 97 85 A T = 13 B T = C T = 13 D T = 3 + z + z2 Câu 38 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Trang 3/5 Mã đề 001 Câu 39 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm S Câu 40 Cho số phức z , thỏa mãn A |z| = B |z| = bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm P D điểm Q z+1 số ảo Tìm |z| ? z−1 C |z| = D |z| = √ Câu 41 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 − ab − bc − ca B C a + b + c D a2 + b2 + c2 + ab + bc + ca z Câu 42 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ D A B C 2 Câu 43 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 44 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 27 25 29 23 A B C D 4 4 Câu 45 Hàm số hàm số sau có đồ thị hình vẽ bên C y = −x4 + 2x2 + A y = −x4 + 2x2 B y = x3 − 3x2 D y = −2x4 + 4x2 Câu 46 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 47 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −4 C −2 D Câu 50 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = C P = + 2(ln a)2 D P = ln a Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001