Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có đáy bằng a, AA′ = 4 √ 3a Thể tích khối lă[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu lăng trụ ABC.A√′ B′C ′ có đáy a, AA′ = 3a Thể tích khối lăng trụ cho là: √ Cho A 3a B 3a3 C 3a3 D a3 Câu √Cho hai√ số thực a, bthỏa mãn√ a > b > Kết luận√ sau sai? √ √ A a− < b− C a > b B a < b D ea > eb Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 30a3 C 100a3 D 60a3 Câu Bất đẳng thức sau đúng? π A 3√ < 2π √ e π C ( − 1) < ( − 1) −e B 3√ > 2−e √ π e D ( + 1) > ( + 1) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + ty = + 2tz = C x = + 2ty = + tz = D x = + 2ty = + tz = − 4t Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số nghịch biến (0; +∞) C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu Cho hàm số y = cx + d A bc > B ab < C ac < D ad > Câu Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = x4 + 3x2 + B y = x2 D y = cos x Câu Đường thẳng y = tiệm cận ngang đồ thị đây? −2x + 1+x 2x − A y = B y = C y = D y = x+1 x−2 − 2x x+2 Câu 10 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A 3a B C D Câu 11 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (1; 4) B Hàm số cho nghịch biến khoảng (3; +∞) C Hàm số cho đồng biến khoảng (−∞; 3) D Hàm số cho nghịch biến khoảng (1; 4) 2 Câu 12 Cho hàm số f (x) = − x + (2m + 3)x − (m + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A 16 B C D Trang 1/5 Mã đề 001 − → Câu 13 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 90 B 60 C 30◦ D 45◦ Câu 14 Tính đạo hàm hàm số y = x A y′ = x.5 x−1 B y′ = x C y′ = x ln Câu 15 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 6a2 B 2a3 C a3 D y′ = 5x ln D 6a3 Câu 16 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−1 ; 4) B (−∞ ; −2) C (0 ; +∞) D (−2 ; 0) Câu 17 Tìm số phức liên hợp số phức z = i(3i + 1) B z = −3 + i C z = −3 − i A z = − i D z = + i 4(−3 + i) (3 − i) Câu 18 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ − 2i √ √ A |w| = B |w| = 85 C |w| = D |w| = 48 (1 + i)(2 − i) √ + 3i C |z| = B |z| = Câu 19 Mô-đun số phức z = A |z| = D |z| = √ Câu 20 biểu thức |z1 + z1 z2 | √ √ Cho số phức z1 = + 2i, √ z2 = − i Giá trị √ A 10 B 10 C 30 D 130 Câu 21 Số phức z = A (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B C D 21008 Câu 22 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D − 2i (1 − i)(2 + i) Câu 23 Phần thực số phức z = + 2−i + 3i 29 11 11 29 A − B C − D 13 13 13 13 2(1 + 2i) Câu 24 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A 13 B C D Câu 25 Tính mơ-đun số phức z√thỏa mãn z(2 − i) + 13i√= 34 34 A |z| = 34 B |z| = C |z| = 3 D |z| = √ 34 Câu 26 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 45◦ C 30◦ D 90◦ x−2 y−1 z−1 Câu 27 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Trang 2/5 Mã đề 001 Câu 28 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A B 15 C D 17 Câu 29 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 A B C D 35 35 35 Câu 30 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Câu 31 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (6; 7) B (4; 5) C (2; 3) D (3; 4) ax + b có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (−2; 0) B (0; −2) C (0; 2) Câu 32 Cho hàm số y = Câu 33 Với a số thực dương tùy ý, ln(3a) − ln(2a) A lna B ln C ln D (2; 0) D ln(6a2 ) Câu 34 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 35 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i C |z| = D |z| = A |z| = B |z| = Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z √2 | √ √ A P = B P = 26 C P = 34 + D P = + Câu 37 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 38 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp ! sau đây? ! ! 9 A ; B ; C 0; D ; +∞ 4 4 Câu 39 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 √ Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Trang 3/5 Mã đề 001 Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm P √ Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | + 2|z2 + z3 | + 3|z3 + z1 | bao nhiêu? √ √ √ 10 B Pmax = C Pmax = A Pmax = 3 2 Giá trị lớn biểu thức D Pmax √ = Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = (|z| − 4)2 C P = |z|2 − D P = |z|2 − Câu 43 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+1 y z−2 = = Viết 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : y − z + = B (P) : x − 2y + = C (P) : x − 2z + = D (P) : y + z − = Câu 44 Gọi S tập hợp tất giá trị tham số m để bất phương trình log3 (x2 − 5x + m) > log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞) Tìm khẳng định A S = (−∞; 5] B S = [6; +∞) C S = (−∞; 4) D S = (7; +∞) Câu 45 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B m < −1 C m > D −1 ≤ m < Câu 46 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 209 B C D A 210 105 210 21 Câu 47 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (−2; 0) B (−∞; −2) C (2; +∞) D (0; 2) Câu 48 Cần chọn người cơng tác từ tổ có 30 người, số cách chọn A 330 B 10 C A330 D C30 −a = (4; −6; 2) Phương Câu 49 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 2ty = −3tz = + t B x = + 2ty = −3tz = + t C x = −2 + 4ty = −6tz = + 2t D x = + 2ty = −3tz = −1 + t Câu 50 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A x − 2y − 2z − = B 3x − 4y + 6z + 34 = C x + 2y + 2z + = D −x + 2y + 2z + = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001