Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được A[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường elip B Đường hypebol C Đường parabol D Đường tròn Câu Hình nón có bán kính đáy √ tích xung quanh √ R, đường sinh l diện C π l2 − R2 D 2πRl A πRl B 2π l2 − R2 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; −5; 0) C (0; 5; 0) D (0; 1; 0) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 D C(6; −17; 21) A C(20; 15; 7) B C(6; 21; 21) C C(8; ; 19) x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 B y = − C y = −1 D y = A y = R R R R 2 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (2; −1; −2) C (−2; 1; 2) D (−2; −1; 2) Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B πR3 C 6πR3 D 4πR3 Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; ln3) C S = (−∞; 2) D S = [ 0; +∞) Câu Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A 192 B −384 C 384 D −192 Câu 10 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a A B C 2a D a 2 Câu 11 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A B −2 C −1 D Câu 12 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −3 B C −2 D Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) không cắt mặt cầu (S ) B (P) cắt mặt cầu (S ) C (P) qua tâm mặt cầu (S ) D (P) tiếp xúc mặt cầu (S ) Câu 14 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 20 B 13 C 18 D 17 Trang 1/5 Mã đề 001 ax + b có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành A (3; ) B (0 ; −2) C (0 ; 3) D (2 ; 0) Câu 15 Cho hàm số y = Câu 16 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A K(3; 0; 15) B H(−2; −1; 3) C I(−1; −2; 3) D J(−3; 2; 7) Câu 17 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B −21008 C 21008 D −22016 Câu 18.√Cho số phức z1 = +√2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ B 130 C 30 D 10 A 10 Câu 19 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực C Mô-đun số phức z số thực không âm B Mô-đun số phức z số thực dương D Mô-đun số phức z số phức √ Câu 20 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ −1 B −1 ≤ m ≤ C ≤ m ≤ D m ≥ m ≤ (1 + i)(2 − i) + 3i √ B |z| = C |z| = Câu 21 Mô-đun số phức z = A |z| = Câu 22 Tính mơ-đun số phức √ z thỏa mãn z(2 − i) + 13i =√1 34 34 C |z| = A |z| = 34 B |z| = 3 D |z| = √ D |z| = √ 34 Câu 23 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D 2 4(−3 + i) (3 − i) Câu 24 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ A |w| = B |w| = C |w| = 48 D |w| = 85 Câu 25 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = + i C P = D P = Câu 26 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 A B C D 35 35 35 Câu 27 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 45◦ B 60◦ C 30◦ D 90◦ 800π Câu 28 Cho khối nón có đỉnh S , chiều cao thể tích Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 Trang 2/5 Mã đề 001 Câu 29 Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A 12 B C D Câu 30 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 B y′ = C y′ = A y′ = − xln3 xln3 x π Câu 31 Trên khoảng (0; +∞), đạo hàm hàm số y = x là: D y′ = ln3 x D y′ = xπ−1 π Câu 32 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a A y′ = xπ−1 B y′ = πxπ đồng biến khoảng (0; 1)? A 11 B 12 C y′ = πxπ−1 C D Câu 33 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; −2; −3) B (1; −2; 3) C (−1; 2; 3) D (1; 2; −3) Câu 34 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Câu 35 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = C A = D A = −1 √ Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz D điểm Q √ Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Câu 38 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm S C điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm P D điểm Q Câu 39 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 Câu 40 Cho số phức z , cho z số thực w = |z| bằng? + |z|2 A D z số thực Tính giá trị biểu + z2 thức B √ C D Trang 3/5 Mã đề 001 Câu 41 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i C |w|min = D |w|min = A |w|min = B |w|min = 2 Câu 43 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 1) −n = (2; 3; −4) −n = (2; −3; 4) −n = (−2; 3; 4) A → B → C → D → −a = (4; −6; 2) Phương Câu 44 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = + 2ty = −3tz = + t B x = −2 + 4ty = −6tz = + 2t C x = + 2ty = −3tz = −1 + t D x = −2 + 2ty = −3tz = + t Câu 45 Biết F(x) = x nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx A 26 B 10 C 32 D Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm −−→ −−→ −−→ tọa độ điểm M thỏa mãn OM = 2AB − AC A M(−2; 6; −4) B M(−2; −6; 4) C M(5; 5; 0) D M(2; −6; 4) Câu 47 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A −4 B C 2i D √ Câu 48 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: A (x − 4)2 + (y + 8)2 = 20 √ C (x + 4)2 + (y − 8)2 = √ B (x − 4)2 + (y + 8)2 = D (x + 4)2 + (y − 8)2 = 20 Câu 49 Tập nghiệm bất phương trình log3 (10 − x+1 ) ≥ − x chứa số nguyên A B C Vô số D Câu 50 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A −4 ≤ m < −3 B m > −4 C −4 < m ≤ −3 D −4 < m < −3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001