Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho z là một số phức Xét các mệnh đề sau I Nếu z = z thì z[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −7 B C D −3 1 25 = + Khi phần ảo z bao nhiêu? Câu Cho số phức z thỏa z + i (2 − i)2 A −17 B −31 C 31 D 17 Câu Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = C P = (1 + i)(2 − i) Câu Mô-đun số phức z = √ + 3i A |z| = B |z| = C |z| = D P = + i D |z| = √ Câu 6.√Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi√đó mơ-đun số phức w = 6z − 25i B C 29 D 13 A Câu Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (6; 7) C (7; 6) D (7; −6) Câu Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B 12 C D Câu Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A B 15 C D 17 Câu 10 Cho cấp số nhân (un ) với u1 = công bội q = 12 Giá trị u3 A 41 B 72 C 21 D Câu 11 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = B d = R C d < R D d > R Câu 12 Tiệm cận ngang đồ thị hàm số y = A y = 23 B y = − 31 2x+1 3x−1 đường thẳng có phương trình: C y = − 23 D y = 13 d Câu 13 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng √ (ABC) A a B a C 2a D a Câu 14 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Trang 1/5 Mã đề 001 Câu 15 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 3a3 C 6a3 D 9a3 A 4a3 Câu 16 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a > a x > ay ⇔ x < y C Nếu a > a x > ay ⇔ x > y D Nếu a < a x > ay ⇔ x < y Câu 17 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = + 2t x = − 2t x = + 2t x = −1 + 2t y = −2 + 3t y = −2 + 3t y = −2 − 3t y = + 3t A B C D z = − 5t z = + 5t z = − 5t z = −4 − 5t Câu 18 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc hai đường thẳng AC √ DB′ Tính giá trị cos α.√ 3 B C D A 2 Câu 19 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 4π B 3π C 2π D π √ Câu 20 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 A ≤ |z| ≤ B |z| > C |z| < D < |z| < 2 2 Câu 21 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = C P = A P = D P = 2 Câu 22 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi đó√độ dài MN √ C MN = D MN = A MN = B MN = Câu 23 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B C √ D √ 13 Câu 24 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x − y + = C x − y + = D x + y − = Câu 25 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A B 5π C D 25π Câu 26 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 4π B 3π C 2π D π Câu 27 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A 5π B C 25π D Trang 2/5 Mã đề 001 Câu 28 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 15 15 B S = C S = A S = 2 D S = 1+i z 25 Câu 29 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = D max T = 10 √ Câu 30 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 31 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 20 C r = D r = 22 Câu 32 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x + y − = C x − y + = D x − y + = √ Câu 33 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A ( ; +∞) B (0; ) C (1; +∞) D (0; 1) 4 Câu 34 Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 35 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B C − D 6 Câu 36 Đường cong hình bên đồ thị hàm số nào? A y = x4 + 2x2 + B y = x4 + C y = −x4 + 2x2 + D y = −x4 + Câu 37 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 52 C yCD = D yCD = 36 Câu 38 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 B < m < C m < D Không tồn m A m < 3 Câu 39 Trong hình đây, có hình đa diện? Hình A B Hình Hình C D Câu 40 Bảng biến thiên hình hàm số hàm số sau? Trang 3/5 Mã đề 001 x −∞ +∞ + y′ + +∞ y A y = 2x − x−1 B y = 2x + x−1 −∞ C y = 2x − x+1 D y = 2x + x−1 Câu 41 Cho hàm số y = f (x) liên tục R lim y = Trong khẳng định sau, khẳng định x→+∞ đúng? A Đường thẳng y = tiệm cận ngang đồ thị hàm số y = f (x) B Đường thẳng x = tiệm cận đứng đồ thị hàm số y = f (x) C Đường thẳng y = tiệm cận đứng đồ thị hàm số y = f (x) D Đường thẳng x = tiệm cận ngang đồ thị hàm số y = f (x) Câu 42 Xét hàm số f (x) = −x4 + 2x2 + đoạn [0; 2] Trong khẳng định sau, khẳng định sai? A Hàm số f (x) đạt giá trị lớn đoạn [0; 2] x = B Giá trị nhỏ hàm số f (x) đoạn [0; 2] −5 C Hàm số f (x) đạt giá trị nhỏ đoạn [0; 2] x = D Giá trị lớn hàm số f (x) đoạn [0; 2] Câu 43 Cho hàm số y = −x4 − x2 + Trong khẳng định sau, khẳng định sai? A Đồ thị hàm số cắt trục tung điểm (0; 1) B Đồ thị hàm số khơng có tiệm cận C Điểm cực tiểu hàm số (0; 1) D Đồ thị hàm số có điểm cực đại Câu 44 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (−1; 0) B (−∞; 0) C (−1; +∞) D (0; +∞) Câu 45 Cho số phức z = + 9i, phần thực số phức z2 A 85 B C 36 D −77 Câu 46 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A πrl B 2πrl C 23 πrl2 D 31 πr2 l Câu 47 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A B 34 C D 23 Câu 48 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (0; 2) B (1; 3) C (−∞; 1) D (3; +∞) Câu 49 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n1 = (−1; 1; 1) B → n4 = (1; 1; −1) C → n3 = (1; 1; 1) D → n2 = (1; −1; 1) Câu 50 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 A 354 B 17 C 35 D 359 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001