Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đ[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = −15 C m = D m = 13 Câu Hàm số sau đồng biến R? √ √ A y = tan x B y = x2 + x + − x2 − x + C y = x4 + 3x2 + D y = x2 ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu Cho hàm số y = cx + d A ab < B ad > C bc > D ac < p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếu < x < π y > − 4π2 C Nếu < x < y < −3 D Nếux = y = −3 Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+2 m+2 m+1 2m + A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) 2m + m+1 m+2 m+2 Câu √Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh 2 B π l2 − R2 C 2πRl D πRl A 2π l − R Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m > C m ≥ e−2 D m > 2e Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(20; 15; 7) B C(6; 21; 21) C C(6; −17; 21) D C(8; ; 19) √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 450 B 1200 C 300 D 600 √ d = 1200 Gọi Câu 10 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a 15 a A a 15 B C D 3 √ x Câu 11 Tìm nghiệm phương trình x = ( 3) A x = −1 B x = C x = D x = log Câu 12 Cho a > a , Giá √ trị a A B √ a bằng? C Câu 13 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B π C D D −1 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 2; 0) B A(1; 0; 3) C A(0; 0; 3) D A(0; 2; 3) Trang 1/5 Mã đề 001 Câu 15 Đạo hàm hàm số y = A y′ = (3x − 1) ln log √ 3x − là: B y′ = 3x − ln C y′ = (3x − 1) ln 2 D y′ = 3x − ln Câu 16 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + Câu 17 Cho số phức z thỏa mãn (2 + i)z + 1+i A B 13 C D Câu 18 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2k C A = 2ki D A = (1 + i)(2 − i) Câu 19 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = z2 Câu 20 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 13 B C 11 D Câu 21 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 22 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 − i B z = − i C z = −3 + i D z = + i Câu 23 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A |z2 | = |z|2 B z + z = 2bi C z − z = 2a D z · z = a2 − b2 Câu 24 Cho hai √ số phức z1 = + i z2 = − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu 25 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −22016 B −21008 C 21008 D −21008 + Câu 26 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn ngồi 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 6π(dm3 ) B 54π(dm3 ) C 12π(dm3 ) D 24π(dm3 ) √ Câu 27 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vng cân B, AC = 2a Thể tích√khối chóp S ABC √ √ 3 √ a3 a 2a A B a3 C D Câu 28 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 45.188.656 đồng B 46.538667 đồng C 48.621.980 đồng D 43.091.358 đồng Câu 29 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Trang 2/5 Mã đề 001 Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 2,075 B 11 C 33,2 D 8,9 3x − ≤ là: Câu 30 Tập nghiệm bất phương trình log4 (3 x − 1).log 16 4 A S = [1; 2] B S = (−∞; 1] ∪ [2; +∞) C S = (0; 1] ∪ [2; +∞) D S = (1; 2) Câu 31 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với √ góc hai mặt phẳng √ (SAC) (SBC) bằng? √ mặt phẳng đáy Tính cơsin 2 A B C D 2 Câu 32 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 2x − đạt giá trị lớn đoạn [1; 3] Câu 33 Với giá trị tham số m hàm số y = x + m2 : √ A m = ± B m = ±2 C m = ±1 D m = ±3 2z − i Mệnh đề sau đúng? Câu 34 Cho số phức z thỏa mãn |z| ≤ ĐặtA = + iz A |A| ≤ B |A| ≥ C |A| < D |A| > Câu 35 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z √2 | √ √ B P = C P = + D P = 34 + A P = 26 Câu 36 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = −1 B A = C A = + i D A = Câu 37 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 38 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D √ 2 Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2 C |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 40 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 10 B C 15 D Câu 41 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 √ Câu 42 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 A ≤ |z| ≤ B |z| > C |z| < D < |z| < 2 2 Trang 3/5 Mã đề 001 Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = −1 + 2t x = + 2t x = − 2t y = −2 − 3t y = + 3t y = −2 + 3t y = −2 + 3t A B C D z = − 5t z = −4 − 5t z = − 5t z = + 5t Câu 44 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A 6π ln + 5 B 6π C π cos x F(− ) = π Khi giá trị sin x + cos x 3π ln + D ln + 6π Câu 45 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 6a3 B 4a3 C 12a3 D 3a3 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (2; 14; 14) A 2→ −u + 3→ −v = (3; 14; 16) B 2→ −u + 3→ −v = (1; 14; 15) C 2→ −u + 3→ −v = (1; 13; 16) D 2→ √ 2x − x2 + có số đường tiệm cận đứng là: Câu 47 Đồ thị hàm số y = x2 − A B C D Câu 48 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n A log2 2250 = 2mn + n + n B log2 2250 = 3mn + n + n C log2 2250 = 2mn + n + n D log2 2250 = 2mn + 2n + m Câu 49 Tìm tất giá trị tham số m để hàm số y = A m = −1 B Khơng có m x2 + mx + đạt cực tiểu điểm x = x+1 C m = D m = Câu 50 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a > a x > ay ⇔ x > y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x < y Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001