Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2, y =[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 −x Câu Tìm tất giá trị tham số m để hàm số y = xe + mx đồng biến R A m > B m ≥ e−2 C m > 2e D m > e2 √ ′ ′ ′ Câu Cho lăng trụ ABC.A B C có đáy a, AA′ = 3a Thể tích khối √ lăng trụ cho là: √ 3 A a B 3a C 3a D 3a3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A 3π B √ C 3π D 3 x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 B y = C y = A y = − D y = −1 R R R R 2 Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 20 (m) B S = 24 (m) C S = 28 (m) D S = 12 (m) Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −15 B m = C m = 13 D m = −2 Câu Cho < a , 1; < x , Đẳng thức sau sai? A aloga x = x B loga2 x = loga x C loga x2 = 2loga x D loga (x − 2)2 = 2loga (x − 2) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 2; 0) B A(0; 0; 3) C A(1; 0; 3) D A(0; 2; 3) Câu 10 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 C Không tồn m D < m < A m < B m < 3 Câu 11 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A ( ; 2] [22; +∞) B [ ; 2] [22; +∞) C [22; +∞) D ( ; +∞) 4 √ Câu 12 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang khơng có tiệm cận đứng B Khơng có tiệm cận Trang 1/5 Mã đề 001 C Khơng có tiệm cận ngang có tiệm cận đứng D Có tiệm cận ngang tiệm cận đứng Câu 13 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B R Câu 14 Tính nguyên hàm cos 3xdx B −3 sin 3x + C A − sin 3x + C C C sin 3x + C Câu 15 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B C π D D sin 3x + C D −1 Câu 16 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − 12 m2 − m2 − 12 A B C D 2m 2m 2m m Câu 17 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực là−3 phần ảo −2i C Phần thực phần ảo 2i D Phần thực −3 phần ảo là−2 Câu 18 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực C Mô-đun số phức z số thực dương B Mô-đun số phức z số thực không âm D Mô-đun số phức z số phức Câu 19 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B −3 + 2i C 11 + 2i D −3 − 2i Câu 20 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ B ≤ m ≤ C m ≥ m ≤ −1 D −1 ≤ m ≤ Câu 21 Số phức z = A + 2i + i2017 có tổng phần thực phần ảo 2−i B -1 C √ D Câu 22 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = + i B P = C P = D P = 2i Câu 23 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 24 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B C −3 D −7 1 25 Câu 25 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 31 B 17 C −31 D −17 √ Câu 26 Cho hình chóp tứ giác S ABCD có đáy hình vuông cạnh a 2, tam giác S AB vuông cân S mặt phẳng (S AB) vng√góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a 10 a A a B C D Trang 2/5 Mã đề 001 2x − Câu 27 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ± B m = ±3 C m = ±2 D m = ±1 Câu 28 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: B loga (xy) = loga x.loga y A loga xn = log x , (x > 0, n , 0) an C loga x có nghĩa với ∀x ∈ R D loga = a loga a = Câu 29 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 8,9 B 33,2 C 2,075 D 11 Câu 30 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (4; −6; 8) B (−2; 3; 5) C (1; −2; 7) D (−2; 2; 6) x −1 ≤ là: Câu 31 Tập nghiệm bất phương trình log4 (3 x − 1).log 16 4 A S = (1; 2) B S = (−∞; 1] ∪ [2; +∞) C S = [1; 2] D S = (0; 1] ∪ [2; +∞) Câu 32 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R (mặt nước thấp nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số h √ √ √ √ 2π − 3 π− 2π − A B C D 12 12 Câu 33 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 + − 4x B x3 + − 4x + C x3 − x4 + 2x D 2x3 − 4x4 4 √ 2 Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 35 (Sở Nam Định) Tìm mô-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = 2 √ điểm A hình vẽ bên điểm Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm Q Trang 3/5 Mã đề 001 Câu 37 Cho số phức z , cho z số thực w = |z| bằng? + |z|2 A z số thực Tính giá trị biểu + z2 thức √ B C Câu 38 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D D 2 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B C D √ 2 Câu 40 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| C P = 2016 D P = A P = −2016 B max T = z Câu 41 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ D 2 A B C Câu 42 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = 2016 C P = D P = −2016 Câu 43 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π A B C 6π D 5 Câu 44 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 45 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (1; 5) C (3; 5) D (−3; 0) Câu 46 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 29 27 23 B C D A 4 4 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C −4 D d Câu 48 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C √ = S M = a Tính khoảng cách từ S đến mặt phẳng √ (ABC) A a B a C 2a D a Câu 49 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Trang 4/5 Mã đề 001 Câu 50 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 + sin 3x)5 x+cos3x ln C y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001