Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến t[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m > C m ≥ e−2 D m > 2e Câu Kết đúng? R sin3 x A sin2 x cos x = − + C R C sin2 x cos x = −cos2 x sin x + C sin3 x + C R D sin2 x cos x = cos2 x sin x + C B R sin2 x cos x = đúng? x B Hàm số đồng biến R D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến R C Hàm số nghịch biến (0; +∞) Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = tan x B y = x3 − 2x2 + 3x + 3x + C y = sin x D y = x−1 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H3) C (H4) D (H1) Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = (−∞; 2) C S = [ -ln3; +∞) D S = (−∞; ln3) Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? B R = C R = D R = 21 A R = 29 Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga (x − 2)2 = 2loga (x − 2) B aloga x = x C loga2 x = loga x D loga x2 = 2loga x Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [22; +∞) B [ ; 2] [22; +∞) C ( ; +∞) D ( ; 2] [22; +∞) 4 Câu 10 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + 2x2 + B y = x4 + 2x2 + C y = x4 + D y = −x4 + a3 Câu 11 Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 450 B 600 C 300 D 1350 Câu 12 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(0; −1; 2) C I(0; 1; −2) D I(1; 1; 2) Trang 1/5 Mã đề 001 R Câu 13 Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = 2F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C Câu 14 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A √ Câu 15 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = √ a Tính góc SC mặt phẳng (ABC) A 450 B 300 C 1200 D 600 Câu 16 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 B m < C m < D Không tồn m A < m < 3 + 2i + i2017 có tổng phần thực phần ảo Câu 17 Số phức z = 2−i A B -1 C D (1 + i)(2 − i) Câu 18 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = Câu 19 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = C P = + i D P = Câu 20 Tính mơ-đun số phức √ z thỏa mãn z(2 − i) + 13i = √ 34 C |z| = 34 B |z| = A |z| = 34 Câu 21 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B −3 + 2i C −3 − 2i √ 34 D |z| = D 11 + 2i Câu 22 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực C Mô-đun số phức z số thực dương B Mô-đun số phức z số phức D Mô-đun số phức z số thực không âm Câu 23 Với số phức z, ta có |z + 1|2 A z + z + B z2 + 2z + C |z|2 + 2|z| + D z · z + z + z + 4(−3 + i) (3 − i)2 Câu 24 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ B |w| = 48 C |w| = 85 D |w| = A |w| = Câu 25 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực −3 phần ảo là−2 C Phần thực là−3 phần ảo −2i D Phần thực là3 phần ảo Câu 26 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga x có nghĩa với ∀x ∈ R B loga = a loga a = C loga (xy) = loga x.loga y D loga xn = log x , (x > 0, n , 0) an Câu 27 Đồ thị hàm số sau có điểm cực trị: A y = −x4 − 2x2 − B y = x4 + 2x2 − C y = x4 − 2x2 − Re lnn x Câu 28 Tính tích phân I = dx, (n > 1) x 1 A I = B I = n + C I = n−1 n+1 D y = 2x4 + 4x2 + 1 D I = n Trang 2/5 Mã đề 001 Câu 29 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D Câu 31 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với √ √ mặt phẳng đáy Tính cơsin góc hai mặt phẳng √ (SAC) (SBC) bằng? B C D A 2 Câu 32 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung quanh diện tích mặt √ đáy nhỏ nhất, S 2 A 75dm B 106, 25dm C 50 5dm2 D 125dm2 Câu 33 Trong hệ tọa độ Oxyz, cho A(1; kính AB có phương trình √ 2; 3), B(−3; 0; 1) Mặt2 cầu đường B (x − 1) + (y + 1)2 + (z + 2)2 = A (x + 1)2 + (y − 1)2 + (z − 2)2 = C (x + 1)2 + (y − 1)2 + (z − 2)2 = D (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 Câu 34 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = D P = C P = A P = 2 z Câu 35 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ √ M = |z + − i| B C 2 D A Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = |z|2 − D P = (|z| − 4)2 Câu 37 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 √ điểm A hình vẽ bên điểm Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm N Câu 39 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 40 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 2016 2015 Câu 41 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z +z +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = C P = −2016 D P = 2016 Trang 3/5 Mã đề 001 Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm P C điểm S D điểm R Câu 43 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = 15 B R = C R = D R = 14 Câu 44 Biết π R2 sin 2xdx = ea Khi giá trị a là: A − ln B ln C D √ Câu 45 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình có nghiệm thuộc khoảng (−∞; 1) B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình vơ nghiệm D Bất phương trình với x ∈ (4; +∞) Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A −2x − y + 4z − = B 2x + y − 4z + = C 2x + y − 4z + = D 2x + y − 4z + = x2 + mx + đạt cực tiểu điểm x = x+1 C m = D m = Câu 47 Tìm tất giá trị tham số m để hàm số y = B m = −1 A Không có m Câu 48 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R3 R3 1 R2 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx = − |x2 − 2x|dx R3 (x2 − 2x)dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 49 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + A log2 2250 = B log2 2250 = n n 2mn + 2n + 2mn + n + D log2 2250 = C log2 2250 = n m d Câu 50 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C a D 2a Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001