Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình hộp ABCD A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuôn[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 100a3 C 60a3 D 30a3 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux > thìy < −15 C Nếu < x < y < −3 D Nếux = y = −3 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = 29 C R = 21 D R = Câu √Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh B π l2 − R2 C πRl D 2πRl A 2π l2 − R2 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = x3 − 2x2 + 3x + C y = x2 − 2x + D y = −x4 + 3x2 − Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B πR3 C 2πR3 D 6πR3 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số nghịch biến (0; +∞) C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = sin x B y = x−1 C y = tan x D y = x − 2x2 + 3x + Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = 52 C yCD = −2 D yCD = R5 dx = ln T Giá trị T là: 2x − √ A T = B T = C T = 81 D T = √ x Câu 11 Tìm nghiệm phương trình x = ( 3) A x = −1 B x = C x = D x = Câu 12 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu 10 Biết Câu 13 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Trang 1/5 Mã đề 001 Câu 14 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A −1 B C √ sin 2x Câu 15 Giá trị lớn hàm số y = ( π) R bằng? √ A B π C Câu 16 Gọi S (t) diện tích hình phẳng giới hạn đường y = D π D π ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln − B − ln − C − ln D ln + 2 2 Câu 17.√Cho số phức z1 = +√2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ A 10 B 130 C 10 D 30 Câu 18 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực −3 phần ảo là−2 C Phần thực là−3 phần ảo −2i D Phần thực là3 phần ảo Câu 19 Trong kết luận sau, kết luận sai A Mô-đun số phức z số phức C Mô-đun số phức z số thực dương B Mô-đun số phức z số thực không âm D Mô-đun số phức z số thực Câu 20 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B 11 + 2i C −3 + 2i D −3 − 2i 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + Câu 21 Cho số phức z thỏa mãn (2 + i)z + 1+i A B C 13 D Câu 22 Với số phức z, ta có |z + 1|2 A z2 + 2z + B z + z + C z · z + z + z + D |z|2 + 2|z| + Câu 23 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi mơ-đun số phức√w = 6z − 25i A B 13 C D 29 Câu 24 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −9 B 10 C −10 D − 2i (1 − i)(2 + i) + Câu 25 Phần thực số phức z = 2−i + 3i 29 11 29 11 A B − C − D 13 13 13 13 Re lnn x Câu 26 Tính tích phân I = dx, (n > 1) x 1 1 A I = n + B I = C I = D I = n n−1 n+1 2x − Câu 27 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ±3 B m = ± C m = ±1 D m = ±2 x −2x +3x+1 Câu 28 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) B Hàm số đồng biến khoảng (−∞; 1) (3; +∞) C Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) D Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) Trang 2/5 Mã đề 001 Câu 29 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (4; −6; 8) B (1; −2; 7) C (−2; 2; 6) D (−2; 3; 5) Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D Câu 31 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D x + 2x Câu 32 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A B −2 C 15 D 1 Câu 33 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m > B m < C m > D m > m < 2 Câu 34 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 C T = D T = 13 A T = 13 B T = 3 Câu 36 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = −2016 B P = C P = D P = 2016 z+1 số ảo Tìm |z| ? Câu 37 Cho số phức z , thỏa mãn z−1 A |z| = B |z| = C |z| = D |z| = z Câu 38 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| bằng? thức + |z|2 √ 1 A B C D √ Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm Q Câu 40 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 41 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 15 B C 10 D Trang 3/5 Mã đề 001 Câu 42 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B z số ảo C Phần thực z số âm D |z| = x2 + mx + đạt cực tiểu điểm x = x+1 C m = D m = Câu 43 Tìm tất giá trị tham số m để hàm số y = A Khơng có m B m = −1 Câu 44 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 3a 30 a 15 3a B C D A 10 Câu 45 Biết π R2 sin 2xdx = ea Khi giá trị a là: A − ln B C r Câu 46 Tìm tập xác định D hàm số y = log2 D ln 3x + x−1 A D = (1; +∞) B D = (−1; 4) C D = (−∞; 0) D D = (−∞; −1] ∪ (1; +∞) Câu 47 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 49 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = −x4 + 2x2 C y = x3 − 3x2 D y = −2x4 + 4x2 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 A M( ; ; ) 3 11 17 B M( ; ; ) 3 21 C M( ; ; ) 3 10 31 D M( ; ; ) 3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001