Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đ[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −2 C m = 13 D m = −15 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A πR3 B 6πR3 C 4πR3 D 2πR3 Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = tan x B y = x−1 C y = x3 − 2x2 + 3x + D y = sin x p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < π y > − 4π2 C Nếu < x < y < −3 D Nếux > thìy < −15 Câu R6 Công thức sai? A R cos x = sin x + C C a x = a x ln a + C R B R e x = e x + C D sin x = − cos x + C Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x2 − 2x + B y = x3 − 2x2 + 3x + C y = x D y = −x4 + 3x2 − Câu Cho < a , 1; < x , Đẳng thức sau sai? B loga x2 = 2loga x A loga2 x = loga x C loga (x − 2)2 = 2loga (x − 2) D aloga x = x Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B − ln − C − ln D ln − A ln + 2 2 Câu 10 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − 12 m2 − 4m2 − A B C D 2m m 2m 2m Câu 11 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B −1 C π D √ Câu 12 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a A a B C D 2 log √a Câu 13 bằng? √ Cho a > a , Giá trị a A B C D Trang 1/5 Mã đề 001 Câu 14 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 15 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 C − D A B 6 ′ ′ ′ ′ Câu 16 Cho hình lập phương ABCD.A B C D có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu 17 Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi √ mơ-đun số phức w = 6z − 25i A 13 B C 29 D − 2i (1 − i)(2 + i) Câu 18 Phần thực số phức z = + 2−i + 3i 11 29 11 29 A − B C D − 13 13 13 13 Câu 19 Với số phức z, ta có |z + 1| C z · z + z + z + D |z|2 + 2|z| + A z2 + 2z + B z + z + Câu 20 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A 10 B −9 C −10 D Câu 21 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C (1 + i)(2 − i) Câu 22 Mô-đun số phức z = √ √ + 3i A |z| = B |z| = C |z| = Câu 23 Phần thực số phức z = + (1 + i) + (1 + i) + · · · + (1 + i) A −21008 + B −22016 C −21008 Câu 24 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B −3 + 2i C −3 − 2i 2016 D D |z| = D 21008 D 11 + 2i Câu 25 Tính √ mô-đun số phức z thỏa mãn z(2 − i) + 13i√= √ 34 34 A |z| = B |z| = 34 C |z| = D |z| = 34 3 Câu 26 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung √ quanh diện tích mặt đáy2 nhỏ nhất, S A 106, 25dm2 B 50 5dm2 C 75dm D 125dm2 Câu 27 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 4a2 b 2a2 b 2a2 b 4a2 b A √ B √ C √ D √ 3π 3π 2π 2π Câu 28 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; 2; Độ dài đường cao AH tứ diện ABCD là: A B C D Trang 2/5 Mã đề 001 Câu 29 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường trịn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình √ vuông √ 3a 10 C 3a A 6a B D 3a Câu 30 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 49m B 47m C 50m D 48m Câu 31 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 B C D A 24 12 (2 ln x + 3) Câu 32 Họ nguyên hàm hàm số f (x) = : x (2 ln x + 3)2 ln x + (2 ln x + 3)4 (2 ln x + 3)4 A + C B + C C + C D + C 8 1 Câu 33 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m > B m > m < C m < D m > Câu 34 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ C P = B P = D P = A P = 2 √ Câu 35 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 3 B |z| < C < |z| < D |z| > A ≤ |z| ≤ 2 2 √ 2 Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 3√ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 37 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A |z| = B Phần thực z số âm C z số ảo D z số thực không dương Câu 38 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 A ; B ; +∞ C ; D 0; 4 4 Câu 39 Cho số phức z , thỏa mãn z+1 số ảo Tìm |z| ? z−1 B |z| = C |z| = D |z| = √ √ √ 42 √ Câu 40 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 A |z| = Trang 3/5 Mã đề 001 √ Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z2 + z3 | + 3|z3 + z1 | bao nhiêu? √ √ √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 √ Câu 42 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm Q C điểm P D điểm M Câu 43 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 500π 250π 125π 400π B C D A 9 Câu 44 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 15 a3 15 a3 B C D A 16 Câu 45 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080251 đồng C 36080254 đồng D 36080255 đồng Câu 46 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2abc B P = 2a+b+c C P = 26abc D P = 2a+2b+3c Câu 47 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + n + A log2 2250 = B log2 2250 = n n 2mn + 2n + 2mn + n + C log2 2250 = D log2 2250 = m n Câu 48 Biết π R2 sin 2xdx = ea Khi giá trị a là: A − ln B C ln D x2 + mx + đạt cực tiểu điểm x = x+1 C Không có m D m = Câu 49 Tìm tất giá trị tham số m để hàm số y = A m = −1 B m = Câu 50 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001