Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3 2 , ((ℵ) có[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π D 3π A B 3π C √ 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (2; 3; 1) C M ′ (−2; 3; 1) D M ′ (2; −3; −1) √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H3) C (H4) D (H1) Câu R4 Kết đúng? A sin2 x cos x = −cos2 x sin x + C R sin3 x + C C sin2 x cos x = Câu Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = x4 + 3x2 + sin2 x cos x = cos2 x sin x + C R sin3 x D sin2 x cos x = − + C B R B y = x2 D y = cos x Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = sin x 3x + C y = tan x D y = x−1 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếu < x < π y > − 4π D Nếux > thìy < −15 Câu Trong khơng gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(8; ; 19) B C(6; 21; 21) C C(20; 15; 7) D C(6; −17; 21) √ Câu Đạo hàm hàm số y = log 3x − là: 2 6 B y′ = C y′ = A y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 10 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh 2a Tính thể tích khối nón √ huyền √ π 2.a 2π.a3 4π 2.a3 π.a3 A B C D 3 3 Câu 11 Cho hàm số y = x− số? √ 2017 Mệnh đề đường tiệm cận đồ thị hàm Trang 1/5 Mã đề 001 A Khơng có tiệm cận ngang có tiệm cận đứng B Có tiệm cận ngang khơng có tiệm cận đứng C Có tiệm cận ngang tiệm cận đứng D Không có tiệm cận √ d = 1200 Gọi Câu 12 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt phẳng (A1 BK) √ a a a 15 B C D a 15 A 3 Câu 13 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 √ sin 2x Câu 14 Giá trị lớn hàm số y = ( π) R bằng? √ A π B π C D Câu 15 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B − C D 6 R5 dx = ln T Giá trị T là: Câu 16 Biết 2x − 1 √ A T = B T = C T = 81 D T = − 2i (1 − i)(2 + i) + Câu 17 Phần thực số phức z = 2−i + 3i 11 29 29 11 B − C − D A 13 13 13 13 Câu 18 Cho hai √ số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = Câu 19 Những số sau vừa số thực vừa số ảo? A B Chỉ có số C Khơng có số D C.Truehỉ có số Câu 20 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z − z = 2a B z · z = a2 − b2 C |z2 | = |z|2 D z + z = 2bi Câu 21 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A M(2; −3) B N(2; 3) C P(−2; 3) D Q(−2; −3) Câu 22 Với số phức z, ta có |z + 1|2 B z + z + A z · z + z + z + C z2 + 2z + D |z|2 + 2|z| + Câu 23 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2k B A = C A = D A = 2ki 2017 + 2i + i Câu 24 Số phức z = có tổng phần thực phần ảo 2−i A B C -1 D 1 25 Câu 25 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −31 B −17 C 31 D 17 Câu 26 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga (xy) = loga x.loga y B loga = a loga a = C loga x có nghĩa với ∀x ∈ R D loga xn = log x , (x > 0, n , 0) an Trang 2/5 Mã đề 001 x2 + 2x Câu 27 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ B 15 C D −2 A Câu 28 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−4; −1) B S = [−1; +∞) C S = (−1; +∞) D S = (−∞; −4) ∪ (−1; +∞) Re lnn x Câu 29 Tính tích phân I = dx, (n > 1) x 1 1 B I = C I = D I = n + A I = n+1 n−1 n Câu 30 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ A B C D Câu 31 Tìm tất giá trị tham số m để hàm số y = (m + 2) biến R A m ≤ x3 − (m + 2)x2 + (m − 8)x + m5 nghịch D m < −3 √3 a2 b Câu 32 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A − B C D 3 1 Câu 33 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m < B m > C m > D m > m < B m ≤ −2 C m ≥ −8 Câu 34 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 15 B 10 C D Câu 35 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = A P = D P = 2 Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = |z|2 − C P = |z|2 − D P = (|z| − 4)2 Câu 37 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A |z| = B z số ảo C Phần thực z số âm D z số thực không dương z số thực Giá trị lớn Câu 38 Cho số phức z thỏa mãn z số thực ω = + z2 biểu thức M = |z + − i| √ √ A B 2 C D Câu 39 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = C A = D A = −1 Câu 40 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D Trang 3/5 Mã đề 001 Câu 41 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ √ 85 97 C T = A T = B T = 13 D T = 13 3 Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 √ Câu 43 Tính đạo hàm hàm số y = log4 x2 − A y′ = (x2 x − 1)log4 e B y′ = √ x2 − ln C y′ = 2(x2 x − 1) ln D y′ = (x2 x − 1) ln Câu 44 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −16 C m = D m = m = −10 x2 + mx + đạt cực tiểu điểm x = Câu 45 Tìm tất giá trị tham số m để hàm số y = x+1 A m = B m = C Khơng có m D m = −1 Câu 46 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 47 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ C R = D R = 14 A R = B R = 15 Câu 48 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Câu 49 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 6a3 B 4a3 C 9a3 D 3a3 Câu 50 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 29 23 27 A B C D 4 4 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001