Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2, y =[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 C C(6; −17; 21) D C(20; 15; 7) A C(6; 21; 21) B C(8; ; 19) Câu Hàm số sau đồng biến R? A y = x√4 + 3x2 + √ B y = tan x D y = x2 C y = x2 + x + − x2 − x + Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (−2; 1; 2) C (2; −1; 2) D (−2; −1; 2) Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 360 C 600 D 450 Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 3ab2 B VS ABC = A VS ABC = 12 √ 12 √ a2 3b2 − a2 3a2 b C VS ABC = D VS ABC = 12 12 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x −1+ B y = +1− A y = ln ln 5 ln ln x x − D y = + C y = ln ln 5 ln Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > B m > e2 C m ≥ e−2 D m > 2e Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 2 A C (m ) D (m ) B 3(m ) (m ) Câu 10 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = −2 C yCD = 52 D yCD = 36 √ Câu 11 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a A a B C D Câu 12 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [ ; 2] [22; +∞) B ( ; +∞) C [22; +∞) D ( ; 2] [22; +∞) 4 Trang 1/5 Mã đề 001 Câu 13 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −5 B f (−1) = −3 C f (−1) = −1 D f (−1) = R Câu 14 Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B sin 3x + C C −3 sin 3x + C D sin 3x + C 3 √ Câu 15 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang khơng có tiệm cận đứng B Khơng có tiệm cận ngang có tiệm cận đứng C Có tiệm cận ngang tiệm cận đứng D Khơng có tiệm cận √ sin 2x Câu 16 Giá trị lớn hàm số y = ( π) R bằng? √ A π B π C D (1 + i)(2 − i) Câu 17 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = − 2i (1 − i)(2 + i) + Câu 18 Phần thực số phức z = 2−i + 3i 29 11 29 11 B C − D − A 13 13 13 13 2017 Câu 19 Cho P = + i + i + i + · · · + i Đâu phương án xác? A P = + i B P = 2i C P = D P = Câu 20 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 21 Với số phức z, ta có |z + 1|2 A z2 + 2z + B z · z + z + z + C |z|2 + 2|z| + D z + z + √ Câu 22 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ B ≤ m ≤ C −1 ≤ m ≤ D m ≥ m ≤ −1 Câu 23 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2ki C A = D A = 2k Câu 24 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương B Mô-đun số phức z số thực C Mô-đun số phức z số thực không âm D Mô-đun số phức z số phức !2016 !2018 1+i 1−i Câu 25 Số phức z = + 1−i 1+i A −2 B C + i D Câu 26 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với mặt phẳng đáy Tính cơsin √ góc hai mặt phẳng √ √ (SAC) (SBC) bằng? A B C D 2 √ Câu 27 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vng cân B, AC = 2a Thể tích khối chóp S ABC √ √ √ 3 √ 2a a a A a3 B C D 3 Trang 2/5 Mã đề 001 Câu 28 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác √ ABC quanh trục AB √ πa3 B πa3 C πa3 A D 3πa3 Câu 29 Trong hệ tọa độ Oxyz, cho A(1; kính AB có phương trình √ 2; 3), B(−3; 0; 1) Mặt2 cầu đường B (x + 1) + (y − 1)2 + (z − 2)2 = A (x + 1)2 + (y − 1)2 + (z − 2)2 = C (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 D (x − 1)2 + (y + 1)2 + (z + 2)2 = 1 + + + ta được: Câu 30 Rút gọn biểu thức M = loga x loga2 x logak x 4k(k + 1) k(k + 1) k(k + 1) k(k + 1) A M = B M = C M = D M = loga x loga x 2loga x 3loga x m 3 Câu 31 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 19 A S = (−5; − ) ∪ ( ; 6) B S = (−2; − ) ∪ ( ; 7) 4 4 19 C S = (−3; −1) ∪ (1; 2) D S = (−2; − ) ∪ ( ; 6) 4 x + 2x Câu 32 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A B C 15 D −2 Câu 33 Tập xác định hàm số y = logπ (3 x − 3) là: A [1; +∞) B (3; +∞) C Đáp án khác D (1; +∞) Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 97 85 B T = 13 A T = C T = 13 D T = 3 Câu 35 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 36 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp sau đây? ! ! ! 9 A ; B ; C 0; D ; +∞ 4 4 Câu 37 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D Câu 38 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D z Câu 39 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 A B C D Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 Trang 3/5 Mã đề 001 √ A B √ C D √ Câu 41 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? B < |z| < A < |z| < 2 C < |z| < 2 D + z + z2 số thực − z + z2 < |z| < 2 Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 43 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 15 πa2 17 πa2 17 πa2 17 B C D A 4 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = + 2t x = − 2t x = −1 + 2t y = −2 + 3t y = −2 + 3t y = + 3t y = −2 − 3t A B C D z = − 5t z = + 5t z = −4 − 5t z = − 5t Câu 45 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080255 đồng C 36080254 đồng D 36080251 đồng Câu 46 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ B 6a3 C 4a3 D 3a3 A 9a3 Câu 47 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vuông góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 A B C D 16 Câu 48 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x = ay ⇔ x = y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x < y Câu 49 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 x2 + mx + đạt cực tiểu điểm x = x+1 C Khơng có m D m = Câu 50 Tìm tất giá trị tham số m để hàm số y = A m = −1 B m = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001