Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2, y =[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x + 3x có cực tiểu mà khơng có cực đại A m > B m ≤ C m ≥ D m < Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ C R = D R = 29 A R = B R = 21 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −2 C m = 13 D m = −15 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số đồng biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số nghịch biến R Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x3 C y = −x + 3x − D y = x2 − 2x + p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếux = y = −3 C Nếu < x < π y > − 4π D Nếu < x < y < −3 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 4πR3 C πR3 D πR3 √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (1; +∞) B (0; ) C (0; 1) D ( ; +∞) 4 Câu 10 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 1 C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 √ Câu √ 11 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 600 B 450 C 1200 D 300 Câu 12 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 13 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 A 3(m2 ) B (m2 ) C (m2 ) D (m ) Trang 1/5 Mã đề 001 Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = D m = −7 √ Câu 15 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C D a 2 Câu 16 Tìm giá trị cực đại yCD hàm số y = x − 12x + 20 A yCD = 36 B yCD = −2 C yCD = 52 D yCD = Câu 17 Những số sau vừa số thực vừa số ảo? A Không có số B Chỉ có số C C.Truehỉ có số D z2 Câu 18 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 11 B C 13 D Câu 19 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z2 + 2z + C z · z + z + z + Câu 20 Cho số phức z = + 5i Tìm số phức w = iz + z A w = − 3i B w = + 7i C w = −7 − 7i Câu 21 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực không âm D z + z + D w = −3 − 3i B Mô-đun số phức z số phức D Mô-đun số phức z số thực Câu 22 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2k B A = C A = 2ki D A = Câu 23 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 B (1 + i)2018 = −21009 C (1 + i)2018 = −21009 i D (1 + i)2018 = 21009 i Câu 24 Số phức z = A (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B C 21008 D Câu 25 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A N(2; 3) B M(2; −3) C P(−2; 3) D Q(−2; −3) Câu 26 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa3 3 3 D A πa B 3πa C πa Câu 27 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 24 12 Câu 28 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 12π(dm3 ) B 24π(dm3 ) C 6π(dm3 ) D 54π(dm3 ) x−3 y−6 z−1 Câu 29 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: Trang 2/5 Mã đề 001 x y−1 z−1 = = −3 y z−1 x−1 = = C −1 −3 x y−1 z−1 = = −1 −3 x y−1 z−1 D = = −1 A B Câu 30 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; −1; 1) B (1; −2; −3) C (1; 1; 3) D (−1; 1; 1) m 3 Câu 31 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 19 A S = (−2; − ) ∪ ( ; 7) B S = (−2; − ) ∪ ( ; 6) 4 4 19 C S = (−5; − ) ∪ ( ; 6) D S = (−3; −1) ∪ (1; 2) 4 Câu 32 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 13 3a 13 3a 10 a A B C D 26 13 20 Câu 33 Tìm tất giá trị tham số m để hàm số y = (m + 2) biến R A m ≥ −8 B m < −3 x3 − (m + 2)x2 + (m − 8)x + m5 nghịch C m ≤ −2 Câu 34 Cho số phức z , cho z số thực w = |z| bằng? + |z|2 A D m ≤ z số thực Tính giá trị biểu + z2 thức B C √ D Câu 35 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = 2016 B P = −2016 C P = D max T = √ Câu 36 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 − ab − bc − ca B a2 + b2 + c2 + ab + bc + ca C D a + b + c Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B √ C D 2 Câu 38 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C D 13 Câu 39 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Câu 40 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Trang 3/5 Mã đề 001 Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = (|z| − 2)2 C P = |z|2 − D P = |z|2 − Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm P C điểm R D điểm S Câu 43 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 25 27 23 A B C D 4 4 Câu 44 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 15 a3 a3 15 B C D A 16 Câu 45 Chọn mệnh đề mệnh đề sau: A Nếu a < a x > ay ⇔ x < y B Nếu a > a x > ay ⇔ x > y C Nếu a > a x > ay ⇔ x < y D Nếu a > a x = ay ⇔ x = y Câu 46 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 47 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 30 3a 3a a 15 A B C D 10 √ Câu 48 Tính đạo hàm hàm số y = log4 x2 − 1 x x x ′ ′ A y′ = √ B y′ = C y = D y = 2(x2 − 1) ln (x2 − 1) ln (x2 − 1)log4 e x2 − ln Câu 49 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A B 64 C 32 x2 )=8 D 128 Câu 50 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B R3 |x2 − 2x|dx = − C D R3 R2 (x2 − 2x)dx + R2 R3 1 R3 R2 R3 (x2 − 2x)dx |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx = |x2 − 2x|dx − R3 (x2 − 2x)dx |x2 − 2x|dx Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001