Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Phương trình tiếp tuyến với đồ thị hàm số y = log5x tại điểm có hoành độ[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = −1+ B y = + ln ln 5 ln x x C y = − D y = +1− ln ln 5 ln ln Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π D 3π B 3π C A √ 3 Câu Cho hai số thực a, bthỏa mãn√ a > b > Kết luận√nào sau√ sai? √ √ √ A ea > eb B a < b C a− < b− D a > b Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường hypebol B Đường parabol C Đường trịn D Đường elip Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ D m ≥ A m ∈ (0; 2) B m ∈ (−1; 2) C −1 < m < Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 60a3 C 30a3 D 20a3 √ ′ ′ ′ ′ Câu Cho lăng trụ ABC.A B C có đáy a, AA = 3a Thể tích khối √ lăng trụ cho là: √ 3 A 3a B a C 3a D 3a3 Câu 8.√ Bất đẳng thức √ esau đúng? π A ( + 1) > ( + 1) C 3π < 2π Câu Biết R5 A T = dx = ln T Giá trị T là: 2x − √ B T = −e B 3√ > 2−e √ e π D ( − 1) < ( − 1) √ C T = 81 D T = x Câu 10 Tìm nghiệm phương trình x = ( 3) A x = B x = C x = D x = −1 Câu 11 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 C Không tồn m D < m < A m < B m < 3 x−1 y+2 z Câu 12 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x + y + 2z = B (P) : x − y − 2z = C (P) : x − y + 2z = D (P) : x − 2y − = Trang 1/5 Mã đề 001 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 2 2 2 C (S ) : (x + 2) + (y + 1) + (z − 1) = D (S ) : (x − 2) + (y − 1) + (z + 1) = 3 Câu 14 Tìm giá trị cực đại yCD hàm số y = x − 12x + 20 A yCD = 36 B yCD = −2 C yCD = D yCD = 52 Câu 15 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B − ln C ln − D ln + A − ln − 2 2 ′′ Câu 16 Cho hàm số f (x) thỏa mãn f (x) = 12x + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = B f (−1) = −5 C f (−1) = −1 D f (−1) = −3 √ ′ ′ ′ ′ Câu 17 Cho lăng trụ ABC.A 3a Thể tích khối lăng trụ cho là: √ B3C có đáy a, AA √ = 3 A a B 3a C 3a D 3a3 Rm dx Câu 18 Cho số thực dươngm Tính I = theo m? x + 3x + 2m + m+2 m+2 m+1 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 m+1 2m + m+2 π π x π F( ) = √ Tìm F( ) Câu 19 Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = − C F( ) = + D F( ) = + 4 4 4 Câu 20 Kết đúng? R R sin3 x A sin2 x cos x = cos2 x sin x + C B sin2 x cos x = + C R R sin3 x C sin2 x cos x = −cos2 x sin x + C D sin2 x cos x = − + C Câu 21 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 6πR3 C πR3 D 2πR3 Câu 22 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m > B m ≥ e−2 C m > e2 D m > 2e Câu 23 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (2; −1; −2) C (−2; 1; 2) D (−2; −1; 2) Câu 24 Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = x2 B y = x4 + 3x2 + D y = cos x Câu 25 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu 26 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 4a2 b 2a2 b 4a2 b A √ B √ C √ D √ 3π 3π 2π 2π Trang 2/5 Mã đề 001 Câu 27 Tập xác định hàm số y = logπ (3 x − 3) là: A (3; +∞) B Đáp án khác C [1; +∞) D (1; +∞) Câu 28 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ B C D A m Câu 29 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 19 A S = (−5; − ) ∪ ( ; 6) B S = (−2; − ) ∪ ( ; 7) 4 4 19 C S = (−2; − ) ∪ ( ; 6) D S = (−3; −1) ∪ (1; 2) 4 Câu 30 Đồ thị hàm số sau có điểm cực trị: A y = 2x4 + 4x2 + B y = x4 + 2x2 − C y = x4 − 2x2 − D y = −x4 − 2x2 − Re lnn x Câu 31 Tính tích phân I = dx, (n > 1) x 1 1 A I = B I = n + C I = D I = n n+1 n−1 Câu 32 Đồ thị hình bên đồ thị hàm số nào? −2x + 2x + 2x + 2x − A y = B y = C y = D y = 1−x x+1 x+1 x−1 Câu 33 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 33,2 B 2,075 C 11 D 8,9 Câu 34 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B C 1 R3 R2 R3 1 R3 R2 D R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx = − |x2 − 2x|dx R3 (x2 − 2x)dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 35 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 2mn + n + B log2 2250 = A log2 2250 = n m 2mn + n + 3mn + n + C log2 2250 = D log2 2250 = n n Câu 36 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + 2πR2 B S = πRl + πR2 C S = πRh + πR2 D S = 2πRl + 2πR2 Câu 37 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = √ Câu 38 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = √ C y′ = D y′ = (x − 1)log4 e (x − 1) ln 2(x − 1) ln x2 − ln Trang 3/5 Mã đề 001 x2 Câu 39 Tính tích tất nghiệm phương trình (log2 (4x)) + log2 ( ) = 8 1 1 A B C D 64 32 128 Câu 40 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox D m > A m > m < −1 B m > m < − C m < −2 Câu 41 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 32π 31π A B C 6π D 5 Câu 42 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = + 2(ln a)2 B P = ln a C P = D P = 2loga e Câu 43 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 27 23 25 29 B C D A 4 4 Câu 44 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (−3; 0) C (1; 5) D (−1; 1) Câu 45 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 46 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = − (x − 2x)dx + (x2 − 2x)dx B C D R3 R2 |x2 − 2x|dx = (x2 − 2x)dx + R3 1 R3 R2 R3 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx |x2 − 2x|dx (x2 − 2x)dx Câu 47 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + 2n + B log2 2250 = A log2 2250 = m n 2mn + n + 3mn + n + C log2 2250 = D log2 2250 = n n √ Câu 48 Tính đạo hàm hàm số y = log4 x2 − 1 x x x A y′ = √ B y′ = C y′ = D y′ = (x − 1) ln (x − 1)log4 e 2(x − 1) ln x2 − ln Câu 49 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 500π 250π 400π 125π A B C D 9 x2 + mx + đạt cực tiểu điểm x = x+1 C Khơng có m D m = Câu 50 Tìm tất giá trị tham số m để hàm số y = A m = B m = −1 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001