Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết luận nào sau đây về tính đơn điệu của hàm số y = 1 x là đúng? A Hàm[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 đúng? x B Hàm số nghịch biến (0; +∞) D Hàm số đồng biến R Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(8; ; 19) B C(6; 21; 21) C C(6; −17; 21) D C(20; 15; 7) + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? C −4 < m < D < m , A ∀m ∈ R B m < √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H3) C (H1) D (H4) Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = tan x B y = sin x 3x + C y = x3 − 2x2 + 3x + D y = x−1 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 450 B 360 C 300 D 600 Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+2 2m + m+2 m+1 ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( m+2 m+1 m+2 2m + Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = −x4 + 3x2 − C y = x2 − 2x + D y = x3 − 2x2 + 3x + Câu Cho a > a , Giá trị alog A B √ a bằng? √ C Câu 10 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 36 C yCD = 52 D D yCD = Câu 11 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(1; 5; 3) B C(3; 7; 4) C C(5; 9; 5) D C(−3; 1; 1) Câu 12 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ −1 C m ≥ D m > Câu 13 Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2] B (−∞; 2] C (1; 2) D [2; +∞) Trang 1/5 Mã đề 001 Câu 14 Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 15 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln − B − ln − C ln + D − ln 2 2 Câu 16 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu 17 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ a 2a 5a 3a A √ B √ C D 5 Câu 18 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 2; 0) B (−2; 0; 0) C (0; 6; 0) D (0; −2; 0) ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu 19 Cho hàm số y = cx + d A bc > B ad > C ac < D ab < Câu 20 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; 1; 0) C (0; 5; 0) D (0; −5; 0) Câu 21 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x +1− B y = −1+ A y = ln ln 5 ln ln x x C y = + D y = − ln 5 ln ln Câu 22 Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B ln x > ln y C log x > log y D log x > log y a a Câu 23 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 20a3 C 30a3 D 60a3 Câu 24 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 450 B 360 C 300 D 600 Câu 25 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 Câu 26 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường trịn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình √ vuông √ 3a 10 A 3a B C 3a D 6a Trang 2/5 Mã đề 001 Câu 27 Trong hệ tọa độ Oxyz, cho A(1; kính AB có phương trình √ 2; 3), B(−3; 0; 1) Mặt2 cầu đường 2 2 A (x + 1) + (y − 1) + (z − 2) = B (x − 1) + (y + 1) + (z + 2)2 = 2 C (x + 1) + (y − 1) + (z − 2) = D (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 Câu 28 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (1; −2; 7) B (−2; 2; 6) C (−2; 3; 5) D (4; −6; 8) Câu 29 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi là: √ A 8π B 4π C 2π D 3π Câu 30 Cho hình chóp S.ABC có đáy ABC tam giác vng cân với BA = BC = a, S A = a vuông góc với √ mặt phẳng đáy Tính cơsin √ (SAC) (SBC) bằng? √ góc hai mặt phẳng A B C D 2 Câu 31 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x π 3π 3π π A V = B V = C V = D V = Câu 32 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 43.091.358 đồng B 46.538667 đồng C 48.621.980 đồng D 45.188.656 đồng Câu 33 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 20 5πa3 5π 5 πa B V = C V = a D V = πa3 A V = 6 Câu 34 Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = B R = C R = 14 D R = 15 Câu 35 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 2abc C P = 26abc D P = 2a+2b+3c Câu 36 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ cách hai đường thẳng √ √ a 15 3a 3a 30 3a A B C D 10 Câu 37 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 27 23 25 A B C D 4 4 Câu 38 Gọi giá trị lớn giá trị nhỏ hàm số y = x − 4x đoạn [−1; 2] M, m Tính M + m A B C D Câu R39 Chọn mệnh đề mệnh đề sau: R A x dx =5 x + C B sin xdx = cos x + C R R e2x (2x + 1) C (2x + 1)2 dx = +C D e2x dx = + C Trang 3/5 Mã đề 001 Câu 40 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −16 B m = C m = D m = m = −10 d Câu 41 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ B a C a D 2a A a Câu 42 Biết π R2 sin 2xdx = ea Khi giá trị a là: A − ln B C D ln x2 + mx + đạt cực tiểu điểm x = Câu 43 Tìm tất giá trị tham số m để hàm số y = x+1 A Khơng có m B m = C m = −1 D m = Câu 44 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 45 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 3a 30 3a a 15 B C D A 10 r 3x + Câu 46 Tìm tập xác định D hàm số y = log2 x−1 A D = (1; +∞) B D = (−1; 4) C D = (−∞; −1] ∪ (1; +∞) D D = (−∞; 0) Câu 47 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080253 đồng C 36080251 đồng D 36080255 đồng √ Câu 48 Tính đạo hàm hàm số y = log4 x2 − 1 x x x A y′ = √ B y′ = C y′ = D y′ = 2(x − 1) ln (x − 1) ln (x − 1)log4 e x2 − ln Câu 49 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A (2x + 1)2 dx = + C B sin xdx = cos x + C R R e2x C x dx =5 x + C D e2x dx = +C Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C −2 D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001