1. Trang chủ
  2. » Tất cả

Đề ôn khảo sát chất lượng thptqg môn toán (731)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 122,68 KB

Nội dung

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Hình nón có bán kính đáy R, đường sinh l thì[.]

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Hình nón có bán kính đáy R, đường sinh l diện√tích xung quanh nó√bằng A 2πRl B πRl C 2π l2 − R2 D π l2 − R2 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > B m > e2 C m ≥ e−2 D m > 2e Câu Hàm số sau cực trị? A y = x3 − 6x2 + 12x − C y = x2 B y = x4 + 3x2 + D y = cos x −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → √ −u | = −u | = −u | = −u | = A |→ B |→ C |→ D |→ Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x − B y = −1+ A y = ln ln 5 ln ln x x C y = +1− D y = + ln ln 5 ln Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số đồng biến R D Hàm số nghịch biến (0; +∞) Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 100a3 C 20a3 D 30a3 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = Câu 10 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A −2 < m < B < m < C −2 ≤ m ≤ D m = Câu 11 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + 2x2 + B y = −x4 + C y = x4 + D y = x4 + 2x2 + Câu 12 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −3 B f (−1) = −5 C f (−1) = −1 D f (−1) = √ sin 2x Câu 13 Giá trị lớn hàm số y = ( π) trên√R bằng? A π B C π D Câu 14 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(−3; 1; 1) B C(3; 7; 4) C C(5; 9; 5) D C(1; 5; 3) Trang 1/4 Mã đề 001 Câu 15 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có√diện tích lớn bằng? √ √ 3 3 2 A (m ) B (m ) C 3(m ) D (m ) Câu 16 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 4π B 2π C 3π D π Câu 17 Bất đẳng thức sau đúng? A 3π < 2π C 3−e > 2−e √ √ π e B ( √3 + 1) > ( √ + 1) e π D ( − 1) < ( − 1) Câu 18 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ C R = D R = 29 A R = B R = 21 Câu 19 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường hypebol B Đường parabol C Đường elip D Đường tròn Câu 20 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x2 − 2x + B y = −x4 + 3x2 − C y = x3 − 2x2 + 3x + D y = x3 Câu 21 Số nghiệm phương trình x + 5.3 x − = A B C D Câu 22 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + 2ty = + tz = B x = + ty = + 2tz = C x = + 2ty = + tz = − 4t D x = + 2ty = + tz = Câu 23 Một mặt cầu có diện tích 4πR2 thể tích khối cầu D πR3 A 4πR3 B πR3 C πR3 Câu 24 Cho < a , 1; < x , Đẳng thức sau sai? A loga x2 = 2loga x B aloga x = x C loga (x − 2)2 = 2loga (x − 2) D loga2 x = loga x Câu 25 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 √ Câu 26 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ a3 2a3 a3 3 A B a D C 3 x −2x +3x+1 Câu 27 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) B Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) C Hàm số đồng biến khoảng (−∞; 1) (3; +∞) D Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) Câu 28 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 46.538667 đồng B 48.621.980 đồng C 45.188.656 đồng D 43.091.358 đồng Trang 2/4 Mã đề 001 (2 ln x + 3)3 : Câu 29 Họ nguyên hàm hàm số f (x) = x (2 ln x + 3)2 (2 ln x + 3)4 ln x + A + C B + C C + C 2 D (2 ln x + 3)4 + C Câu 30 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R (mặt nước thấp nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số h √ √ √ √ 2π − 3 2π − π− 3 A B C D 12 12 Câu 31 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ A 2π B 8π C 3π D 4π 1 + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) B M = C M = 3loga x loga x Câu 32 Rút gọn biểu thức M = A M = 4k(k + 1) loga x Re lnn x Câu 33 Tính tích phân I = dx, (n > 1) x 1 A I = n + B I = n C I = n+1 D M = D I = k(k + 1) 2loga x n−1 Câu 34 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B 1 R3 R2 R3 C R3 |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx = − D R3 (x2 − 2x)dx R2 (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − R3 |x2 − 2x|dx Câu 35 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080251 đồng C 36080255 đồng D 36080253 đồng Câu 36 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính M + m A B C D √ 2x − x2 + có số đường tiệm cận đứng là: Câu 37 Đồ thị hàm số y = x2 − A B C D Câu 38 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 11 17 10 16 21 10 31 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Trang 3/4 Mã đề 001 Câu 39 Biết π R2 sin 2xdx = ea Khi giá trị a là: A ln B C D − ln R ax + b 2x Câu 40 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 41 Hàm số hàm số sau có đồ thị hình vẽ bên D y = −x4 + 2x2 + A y = −2x4 + 4x2 B y = −x4 + 2x2 C y = x3 − 3x2 x+cos3x Câu 42 Tính đạo hàm hàm số y = A y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln ′ x+cos3x C y = (1 − sin 3x)5 ln D y′ = (1 + sin 3x)5 x+cos3x ln Câu 43 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln d Câu 44 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C √ = S M = a Tính khoảng cách từ S đến mặt phẳng √ (ABC) C a D a A 2a B a Câu 45 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a > a x > ay ⇔ x < y x y C Nếu a > a > a ⇔ x > y D Nếu a < a x > ay ⇔ x < y Câu 46 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRh + πR2 C S = πRl + 2πR2 D S = πRl + πR2 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A B C −2 D −4 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ → − → − −u + 3→ −v = (1; 13; 16) A u + v = (1; 14; 15) B 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ Câu 49 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox C m > m < −1 D m > A m > m < − B m < −2 Câu 50 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001

Ngày đăng: 03/04/2023, 08:27

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w