Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Hình nón có bán kính đáy R, đường sinh l thì[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh √ C 2πRl D 2π l2 − R2 A πRl B π l2 − R2 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A 3π B √ C 3π D 3 Câu Tính I = R1 √3 7x + 1dx 21 45 60 B I = C I = 28 28 Câu Số nghiệm phương trình x + 5.3 x − = A B C A I = D I = 20 D Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? + 2x x+1 B −4 < m < C < m , D m < √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H3) B (H4) C (H1) D (H2) A ∀m ∈ R Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số nghịch biến R C Hàm số đồng biến R D Hàm số nghịch biến (0; +∞) Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 52 B yCD = −2 C yCD = D yCD = 36 Câu 10 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 2 A 3(m ) B (m ) C (m ) D (m ) Câu 11 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π A V = B V = C V = D V = 5 Câu 12 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = x4 + 2x2 + C y = −x4 + 2x2 + D y = x4 + Câu 13 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều cao tứ diện √ √ tiếp √ π 2.a2 2π 2.a2 π 3.a A B C π 3.a D 3 Trang 1/4 Mã đề 001 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; 1; 2) C I(0; −1; 2) D I(1; 1; 2) Câu 15 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A −1 B C π D √ sin 2x R bằng? Câu 16 √ Giá trị lớn hàm số y = ( π) A π B C D π Câu 17 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A √ B C 3π D 3π 3 Câu 18 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = [ 0; +∞) C S = [ -ln3; +∞) D S = (−∞; 2) Câu R19 Công thức sai? A R a x = a x ln a + C C cos x = sin x + C R B R sin x = − cos x + C D e x = e x + C Rm dx theo m? + 3x + 2m + m+1 m+2 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 m+2 2m + m+1 ax + b Câu 21 Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ab < B ac < C bc > D ad > p Câu 22 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếu < x < y < −3 C Nếux = y = −3 D Nếu < x < π y > − 4π2 Câu 20 Cho số thực dươngm Tính I = x2 Câu 23 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A −6 B C D Câu 24 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C 4πR3 D πR3 x Câu 25 Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = −1 B y = C y = − D y = R R R R 2 Re lnn x Câu 26 Tính tích phân I = dx, (n > 1) x 1 1 A I = B I = C I = D I = n + n−1 n+1 n m Câu 27 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 A S = (−5; − ) ∪ ( ; 6) B S = (−3; −1) ∪ (1; 2) 4 19 19 C S = (−2; − ) ∪ ( ; 6) D S = (−2; − ) ∪ ( ; 7) 4 4 Trang 2/4 Mã đề 001 Câu 28 Họ nguyên hàm hàm số y = (x − 1)e x là: A (x − 2)e x + C B xe x + C C xe x−1 + C √ x− x+2 Câu 29 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D (x − 1)e x + C D √3 a2 b ) Câu 30 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( c A B − C D 3 Câu 31 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 Câu 32 Trong hệ tọa độ Oxyz, cho A(1; kính AB có phương trình √ 2; 3), B(−3; 0; 1) Mặt2 cầu đường 2 2 A (x + 1) + (y − 1) + (z − 2) = B (x − 1) + (y + 1) + (z + 2)2 = 2 C (x + 1) + (y − 1) + (z − 2) = 24 D (x + 1)2 + (y − 1)2 + (z − 2)2 = Câu 33 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 4a2 b 4a2 b 2a2 b 2a2 b D √ A √ B √ C √ 3π 3π 2π 2π 2 Câu 34 Cho biểu thức P = (ln a + loga e) + ln a − (loga e) , với < a , Chọn mệnh đề A P = ln a B P = C P = + 2(ln a)2 D P = 2loga e Câu 35 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng √ √ cách hai đường√thẳng MN S C 3a 30 a 15 3a 3a B C D A 10 x2 Câu 36 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 32 128 64 Câu 37 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 12π B 8π C 6π D 10π Câu 38 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a > a x > ay ⇔ x > y C Nếu a > a x > ay ⇔ x < y D Nếu a < a x > ay ⇔ x < y Câu 39 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 23 27 29 25 B C D A 4 4 Câu 40 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC a3 15 a3 15 a 15 a3 A B C D 16 √ 2x − x2 + Câu 41 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Trang 3/4 Mã đề 001 Câu 42 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ góc đường thẳng S√B mp(S AC) Tính giá trị sin α √ S A = 2a Gọi α số đo 15 15 B C D A 10 → − → − Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho u = (2; 1; 3), v = (−1; 4; 3) Tìm tọa độ −u + 3→ −v véc tơ 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 13; 16) A 2→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ Câu 44 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = + 2(ln a)2 B P = C P = 2loga e D P = ln a Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = − 2t x = −1 + 2t x = + 2t x = + 2t y = −2 + 3t y = + 3t y = −2 − 3t y = −2 + 3t A B C D z = + 5t z = −4 − 5t z = − 5t z = − 5t Câu 46 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 23 27 25 B C D A 4 4 Câu 47 Chọn mệnh đề mệnh đề sau: R R e2x +C B x dx =5 x + C A e2x dx = R R (2x + 1)3 + C C sin xdx = cos x + C D (2x + 1)2 dx = Câu 48 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 31π 32π A B 6π C D 5 Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C 2x + y − 4z + = D −2x − y + 4z − = Câu 50 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ a 15 3a 3a 3a 30 A B C D 10 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001