1. Trang chủ
  2. » Tất cả

Đề ôn tập thpt qg môn toán (575)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 120,5 KB

Nội dung

Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho số phức z thỏa mãn z = 4(−3 + i) 1 − 2i + (3 − i)2 −i[.]

Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 4(−3 + i) (3 − i)2 Câu Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ A |w| = B |w| = 48 C |w| = 85 D |w| = Câu Trong kết luận sau, kết luận sai A Mô-đun số phức z số phức B Mô-đun số phức z số thực C Mô-đun số phức z số thực dương D Mô-đun số phức z số thực không âm 2017 (1 + i) Câu Số phức z = có phần thực phần ảo đơn vị? 21008 i A 21008 B C D (1 + i)(2 + i) (1 − i)(2 − i) Câu Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết luận 1−i 1+i đúng? A z = z B z số ảo C z = D |z| = z !2016 !2018 1+i 1−i Câu Số phức z = + 1−i 1+i A B −2 C + i D Câu Cho số phức z thỏa mãn √ mô-đun số phức w = 6z − 25i √ z(1 + 3i) = 17 + i Khi A 13 B 29 C D Câu Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 30◦ B 45◦ C 60◦ D 90◦ Gọi A B hai điểm thuộc Câu Cho khối nón có đình S , chiều cao thể tích 800π đường trịn đáy cho AB = 12, khoảng cách từ tâm của√đường tròn đáy đến mặt √ phẳng (S AB) 24 B C A 24 D Câu Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 90◦ C 30◦ D 60◦ Câu 10 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln 23 B ln a C ln 23 Câu 11 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ−1 B y′ = π1 xπ−1 C y′ = xπ−1   D ln 6a2 D y′ = πxπ Câu 12 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu 13 Căn bậc hai -4 tập số phức A 2i -2i B -2 C 4i D không tồn Câu 14 Tất bậc bốn tập số phức có tổng mơ-đun bao nhiêu? A B C D Câu 15 Biết z0 nghiệm phức có phần ảo dương phương trình z2 − 4z + 20 = Trên mặt phẳng tọa độ, điểm điểm biểu diễn số phức w = (1 + i)z0 − 2z0 ? A M2 (2; −10) B M1 (6; 14) C M4 (6; −14) D M3 (−2; 10) Trang 1/5 Mã đề 001 Câu 16 Tổng nghịch đảo nghiệm phương trình z4 −z3 −2z2 +6z−4 = tập số phức 3 1 A − B C D − 2 2 Câu 17 Biết z = + i z = nghiệm phương trình z3 + az2 + bz + c = (với a, b ∈ R ) Khi tổng a + b + c bao nhiêu? A B C −2 D Câu 18 Cho phương trình bậc hai az2 + bz + c = (với a, b, c ∈ R) Xét tập số phức, khẳng định sau, đâu khẳng định sai? −b A Phương trình cho có tổng hai nghiệm a c B Phương trình cho có tích hai nghiệm a C Phương trình cho ln có nghiệm D Nếu ∆ = b2 − 4ac < phương trình vơ nghiệm Câu 19 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 4π B 2π C 3π D π Câu 20 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A B √ C √ D √ 13 Câu 21 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π B 25π C D 5π A −2 − 3i Câu 22 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = √ − 2i D max |z| = A max |z| = B max |z| = C max |z| = √ Câu 23 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 B |z| > C < |z| < D |z| < A ≤ |z| ≤ 2 2 Câu 24 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 22 C r = D r = 20 Câu 25 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x + y − = D x − y + = Câu 26 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 √ Câu 27 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 A ≤ |z| ≤ B |z| > C |z| < D < |z| < 2 2 Trang 2/5 Mã đề 001 Câu 28 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w√ = x + iy mặt phẳng phức √ Để tam giác MNP √ số phức k A w = − 27 − i hoặcw = − 27 + i B w = 27 − i hoặcw = 27 √ + i √ √ √ C w = + 27i hoặcw = − 27i D w = + 27 hoặcw = − 27 Câu 29 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B 2π C 4π D π Câu 30 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường tròn Tính bán kính r đường trịn A r = 20 B r = C r = D r = 22 Câu 31 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A 5π B C 25π D Câu 32 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B π C 4π D 2π Câu 33 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 10 B 15 C D Câu 34 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C D 13 √ 2 Mệnh đề Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ √ 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2z − i Câu 36 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| > B |A| ≤ C |A| ≥ D |A| < √ Câu 37 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| > B < |z| < C |z| < D ≤ |z| ≤ 2 2 Câu 38 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D Câu 39 Xét hàm số f (x) = −x4 + 2x2 + đoạn [0; 2] Trong khẳng định sau, khẳng định sai? A Hàm số f (x) đạt giá trị nhỏ đoạn [0; 2] x = B Hàm số f (x) đạt giá trị lớn đoạn [0; 2] x = C Giá trị lớn hàm số f (x) đoạn [0; 2] D Giá trị nhỏ hàm số f (x) đoạn [0; 2] −5 Câu 40 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (−∞; 0) B (0; +∞) C (−1; 0) D (−1; +∞) Trang 3/5 Mã đề 001 Câu 41 Cho hàm số y = x+1 có đồ thị (C) đường thẳng d có phương trình y = − x Tìm số giao x−1 điểm (C) d A B C D Câu 42 Cho hàm số y = f (x) liên tục R lim y = Trong khẳng định sau, khẳng định x→+∞ đúng? A Đường thẳng x = tiệm cận đứng đồ thị hàm số y = f (x) B Đường thẳng y = tiệm cận ngang đồ thị hàm số y = f (x) C Đường thẳng y = tiệm cận đứng đồ thị hàm số y = f (x) D Đường thẳng x = tiệm cận ngang đồ thị hàm số y = f (x) Câu 43 Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân A BC = 2a Tính thể tích V khối lăng trụ ABC.A′ B′C ′ A V = 12a3 B V = a3 C V = 3a3 D V = 6a3 Câu 44 Điểm cực đại đồ thị hàm số y = x4 − 2x2 + A x = B (0; 3) C x = D (1; 2) Câu 45 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n3 = (1; 1; 1) B → n4 = (1; 1; −1) C → n1 = (−1; 1; 1) D → n2 = (1; −1; 1) Câu 46 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (6; 7) B (−6; 7) C (7; −6) D (7; 6) Câu 47 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 30 B 225 C 105 D 210 Câu 48 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (−1; −2; −3) C (1; 2; 3) D (2; 4; 6) Câu 49 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ B y′ = π1 xπ−1 C y′ = xπ−1 D y′ = πxπ−1 Câu 50 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ A 22 a B 3 a C 2a D 33 a Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 31/03/2023, 07:39

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN