0

tổng hợp bài tập xác suất thống kê có lời giải

39 6,968 28

Đang tải.... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 23/04/2014, 08:34

bài giải xác xuất thống kê 1 BÀI GIẢI XÁC SUẤT THỐNG (GV: Trần Ngọc Hội – 2009) CHƯƠNG 1 NHỮNG ĐỊNH LÝ BẢN TRONG LÝ THUYẾT XÁC SUẤT Bài 1.1: ba khẩu súng I, II và III bắn độc lập vào một mục tiêu. Mỗi khẩu bắn 1 viên. Xác suất bắn trúng mục tiêu cuả ba khẩu I, II và III lần lượt là 0,7; 0,8 và 0,5. Tính xác suất để a) 1 khẩu bắn trúng. b) 2 khẩu bắn trúng. c) 3 khẩu bắn trúng. d) ít nhất 1 khẩu bắn trúng. e) khẩu thứ 2 bắn trúng biết rằng 2 khẩu trúng. Lời giải Tóm tắt: Khẩu súng I IIù III Xác suất trúng 0,7 0,8 0,5 Gọi A j (j = 1, 2, 3) là biến cố khẩu thứ j bắn trúng. Khi đó A 1 , A 2 , A 3 độc lập và giả thiết cho ta: 11 22 33 P(A ) 0, 7; P(A ) 0, 3; P(A ) 0, 8; P(A ) 0, 2; P(A ) 0, 5; P(A ) 0, 5. == == == a) Gọi A là biến cố 1 khẩu trúng. Ta 123 123 123 A AAA AAA AAA=++ Vì các biến cố 123 123 123 A AA,AAA,AAA xung khắc từng đôi, nên theo công thức Cộng xác suất ta 123 123 123 123 123 123 P(A) P(A A A A A A A A A ) P(A A A ) P(A A A ) P(A A A ) =++ =++ Vì các biến cố A 1 , A 2 , A 3 độc lập nên theo công thức Nhân xác suất ta 2 123 1 2 3 123 1 2 3 123 1 233 P(A A A ) P(A )P(A )P(A ) 0,7.0,2.0,5 0,07; P(A A A ) P(A )P(A )P(A ) 0,3.0,8.0,5 0,12; P(A A A ) P(A )P(A )P(A ) 0, 3.0, 2.0,5 0,03. === === === Suy ra P(A) = 0,22. b) Gọi B là biến cố 2 khẩu trúng. Ta 123 123 123 B AAA AAA AAA=++ Tính toán tương tự câu a) ta được P(B) = 0,47. c) Gọi C là biến cố 3 khẩu trúng. Ta 123 C AAA. = Tính toán tương tự câu a) ta được P(C) = 0,28. d) Gọi D là biến cố ít nhất 1 khẩu trúng. Ta DABC. = ++ Chú ý rằng do A, B, C xung khắc từng đôi, nên theo công thức Cộng xác suất ta có: P(D) = P(A) + P(B) + P(C) = 0,22 + 0,47 + 0,28 = 0,97. e) Gỉa sử 2 khẩu trúng. Khi đó biến cố B đã xảy ra. Do đó xác suất để khẩu thứ 2 trúng trong trường hợp này chính là xác suất điều kiện P(A 2 /B). Theo công thức Nhân xác suất ta có: P(A 2 B) = P(B)P(A 2 /B) Suy ra 2 2 P(A B) P(A /B) . P(B) = Mà 2123123 A BAAA AAA=+ nên lý luận tương tự như trên ta được P(A 2 B)=0,4 Suy ra P(A 2 /B) =0,851. Bài 1.2: hai hộp I và II mỗi hộp chứa 10 bi, trong đó hộp I gồm 9 bi đỏ, 1 bi trắng; hộp II gồm 6 bi đỏ, 4 bi trắng. Lấy ngẫu nhiên từ mỗi hộp 2 bi. a) Tính xác suất để được 4 bi đỏ. b) Tính xác suất để được 2 bi đỏ và 2 bi trắng. c) Tính xác suất để được 3 bi đỏ và 1 bi trắng. d) Giả sử đã lấy được 3 bi đỏ và 1 bi trắng. Hãy tìm xác suất để bi trắng được của hộp I. Printed with FinePrint trial version - purchase at www.fineprint.com 3 Lời giải Gọi A i , B i (i = 0, 1, 2) lần lượt là các biến cố i bi đỏ và (2 - i) bi trắng trong 2 bi được chọn ra từ hộp I, hộp II. Khi đó - A 0 , A 1 , A 2 xung khắc từng đôi và ta có: 0 11 91 1 2 10 20 91 2 2 10 P(A ) 0; 9 P(A ) ; 45 36 P(A ) . 45 CC C CC C = == == - B 0 , B 1 , B 2 xung khắc từng đôi và ta có: 02 64 0 2 10 11 64 1 2 10 20 64 2 2 10 6 P(B ) ; 45 24 P(B ) ; 45 15 P(B ) . 45 CC C CC C CC C == == == - A i và B j độc lập. - Tổng số bi đỏ trong 4 bi chọn ra phụ thuộc vào các biến cố A i và B j theo bảng sau: B 0 B 1 B 2 A 0 0 1 2 A 1 1 2 3 A 2 2 3 4 a) Gọi A là biến cố chọn được 4 bi đỏ. Ta có: A = A 2 B 2 . Từ đây, do tính độc lập , Công thức nhân xác suất thứ nhất cho ta: 22 36 15 P(A) P(A )P(B ) . 0,2667. 45 45 === b) Gọi B là biến cố chọn được 2 bi đỏ và 2 bi trắng. Ta có: 4 B = A 0 B 2 + A 1 B 1 + A 2 B 0 Do tính xung khắc từng đôi của các biến cố A 0 B 2 , A 1 B 1 , A 2 B 0 , công thức Cộng xác suất cho ta: P(B) = P(A 0 B 2 + A 1 B 1 + A 2 B 0 ) = P(A 0 B 2 ) + P(A 1 B 1 ) + P(A 2 B 0 ) Từ đây, do tính độc lập , Công thức nhân xác suất thứ nhất cho ta: P(B) = P(A 0 )P(B 2 ) + P(A 1 )P(B 1 ) + P(A 2 )P(B 0 ) = 0,2133. c) Gọi C là biến cố chọn được 3 bi đỏ và 1 bi trắng. Ta có: C = A 1 B 2 + A 2 B 1 . Lý luận tương tự như trên ta được P(C) = P(A 1 )P(B 2 ) + P(A 2 )P(B 1 ) = 0,4933. d) Giả sử đã chọn được 3 bi đỏ và 1 bi trắng. Khi đó biến cố C đã xảy ra. Do đó xác suất để bi trắng được thuộc hộp I trong trường hợp này chính là xác suất điều kiện P(A 1 /C). Theo Công thức nhân xác suất , ta 11 P(A C) P(C)P(A /C) = . Suy ra 1 1 P(A C) P(A /C) P(C) = . Mà A 1 C = A 1 B 2 nên 11212 915 P(A C) P(A B ) P(A )P(B ) . 0, 0667. 45 45 == == Do đó xác suất cần tìm là: P(A 1 /C) = 0,1352. Bài 1.3: Một lô hàng chứa 10 sản phẩm gồm 6 sản phẩm tốt và 4 sản phẩm xấu. Khách hàng kiểm tra bằng cách lấy ra từng sản phẩm cho đến khi nào được 3 sản phẩm tốt thì dừng lại. a) Tính xác suất để khách hàng dừng lại ở lần kiểm tra thứ 3. b) Tính xác suất để khách hàng dừng lại ở lần kiểm tra thứ 4. b) Giả sử khách hàng đã dừng lại ở lần kiểm tra thứ 4. Tính xác suất để ở lần kiểm tra thứ 3 khách hàng gặp sản phẩm xấu. Lời giải Gọi T i , X i lần lượt là các biến cố chọn được sản phẩm tốt, xấu ở lần kiểm tra thứ i. a) Gọi A là biến cố khách hàng dừng lại ở lần kiểm tra thứ 3. Ta có: Printed with FinePrint trial version - purchase at www.fineprint.com 5 A = T 1 T 2 T 3 . Suy ra P(A) = P(T 1 T 2 T 3 ) = P(T 1 ) P(T 2 /T 1 ) P(T 3 / T 1 T 2 ) = (6/10)(5/9)(4/8) = 0,1667. b) Gọi B là biến cố khách hàng dừng lại ở lần kiểm tra thứ 4. Ta có: B = X 1 T 2 T 3 T 4 + T 1 X 2 T 3 T 4 + T 1 T 2 X 3 T 4 . Suy ra P(B) = P(X 1 T 2 T 3 T 4 ) + P(T 1 X 2 T 3 T 4 ) + P(T 1 T 2 X 3 T 4 ) = P(X 1 ) P(T 2 /X 1 ) P(T 3 /X 1 T 2 ) P(T 4 /X 1 T 2 T 3 ) + P(T 1 ) P(X 2 /T 1 ) P(T 3 /T 1 X 2 ) P(T 4 /T 1 X 2 T 3 ) + P(T 1 ) P(T 2 /T 1 ) P(X 3 / T 1 T 2 ) P(T 4 / T 1 T 2 X 3 ) = (4/10)(6/9)(5/8)(4/7) + (6/10)(4/9)(5/8)(4/7)+(6/10)(5/9)(4/8)(4/7) = 3(4/10)(6/9)(5/8)(4/7) = 0,2857. c) Giả sử khách hàng đã dừng lại ở lần kiểm tra thứ 4. Khi đó biến cố B đã xảy ra. Do đó xác suất để ở lần kiểm tra thứ 3 khách hàng gặp sản phẩm xấu trong trường hợp này chính là xác suất điều kiện P(X 3 /B). Theo Công thức nhân xác suất , ta 33 P(X B) P(B)P(X /B)= . Suy ra 3 3 P(X B) P(X /B) P(B) = . Mà X 3 B = T 1 T 2 X 3 T 4 nên P(X 3 B) = P(T 1 T 2 X 3 T 4 ) = P(T 1 ) P(T 2 /T 1 ) P(X 3 / T 1 T 2 ) P(T 4 / T 1 T 2 X 3 ) = (6/10)(5/9)(4/8)(4/7) = 0,0952. Suy ra P(X 3 /B) = 0,3333. Bài 1.4: Một hộp bi gồm 5 bi đỏ, 4 bi trắng và 3 bi xanh cùng cỡ. Từ hộp ta rút ngẫu nhiên không hòan lại từng bi một cho đến khi được bi đỏ thì dừng lại. Tính xác suất để a) được 2 bi trắng, 1 bi xanh và 1 bi đỏ. b) không bi trắng nào được rút ra. 6 Lời giải Gọi D i , T i , X i lần lượt là các biến cố chọn được bi đỏ, bi trắng, bi xanh ở lần rút thứ i. a) Gọi A là biến cố rút được 2 bi trắng, 1 bi xanh và 1 bi đỏ. Ta có: A xảy ra ⇔ Rút được TTXD TXTD XTTD −−− ⎡ ⎢ −−− ⎢ ⎢ −−− ⎣ Suy ra A = T 1 T 2 X 3 D 4 + T 1 X 2 T 3 D 4 + X 1 T 2 T 3 D 4 Từ đây, do tính xung khắc từng đôi của các biến cố thành phần, ta có: P(A) = P(T 1 T 2 X 3 D 4 )+ P(T 1 X 2 T 3 D 4 ) + P(X 1 T 2 T 3 D 4 ) Theo Công thức Nhân xác suất, ta P(T 1 T 2 X 3 D 4 ) = P(T 1 )P(T 2 /T 1 )P(X 3 /T 1 T 2 )P(D 4 /T 1 T 2 X 3 ) = (4/12)(3/11)(3/10)(5/9) = 1/66; P(T 1 X 2 T 3 D 4 ) = P(T 1 )P(X 2 /T 1 )P(T 3 /T 1 X 2 )P(D 4 /T 1 X 2 T 3 ) = (4/12)(3/11)(3/10)(5/9) = 1/66; P(X 1 T 2 T 3 D 4 ) = P(X 1 )P(T 2 /X 1 )P(T 3 /X 1 T 2 )P(D 4 /X 1 T 2 T 3 ) = (3/12)(4/11)(3/10)(5/9) = 1/66. Suy ra P(A) = 3/66 = 1/22 = 0,0455. b) Gọi B là biến cố không bi trắng nào được rút ra. Ta có: B xảy ra ⇔ Rút được D XD XXD X XXD ⎡ ⎢ − ⎢ ⎢ −− ⎢ −−− ⎣ Suy ra B = D 1 + X 1 D 2 + X 1 X 2 D 3 + X 1 X 2 X 3 D 4 Từ đây, do tính xung khắc từng đôi của các biến cố thành phần, ta có: P(B) = P(D 1 )+ P(X 1 D 2 ) + P(X 1 X 2 D 3 ) + P(X 1 X 2 X 3 D 4 ) Theo Công thức Nhân xác suất, ta Printed with FinePrint trial version - purchase at www.fineprint.com 7 P(B) = P(D 1 ) + P(X 1 )P(D 2 /X 1 ) + P(X 1 )P(X 2 /X 1 )P(D 3 /X 1 X 2 ) + P(X 1 )P(X 2 /X 1 )P(X 3 /X 1 X 2 )P(D 4 /X 1 X 2 X 3 ) = 5/12+ (3/12)(5/11) + (3/12)(2/11)(5/10) + (3/12)(2/11)(1/10)(5/9) = 5/9 Bài 1.5: Sản phẩm X bán ra ở thò trường do một nhà máy gồm ba phân xưởng I, II và III sản xuất, trong đó phân xưởng I chiếm 30%; phân xưởng II chiếm 45% và phân xưởng III chiếm 25%. Tỉ lệ sản phẩm loại A do ba phân xưởng I, II và III sản xuất lần lượt là 70%, 50% và 90%. a) Tính tỉ lệ sản phẩm lọai A nói chung do nhà máy sản xuất. b) Chọn mua ngẫu nhiên một sản phẩm X ở thò trường. Giả sử đã mua được sản phẩm loại A. Theo bạn, sản phẩm ấy khả năng do phân xưởng nào sản xuất ra nhiều nhất? c) Chọn mua ngẫu nhiên 121 sản phẩm X (trong rất nhiều sản phẩm X) ở thò trường. 1) Tính xác suất để 80 sản phẩm loại A. 2) Tính xác suất để từ 80 đến 85 sản phẩm loại A. Lời giải Tóm tắt: Phân xưởng I II III Tỉ lệ sản lượng 30% 45% 25% Tỉ lệ loại A 70% 50% 90% a) Để tính tỉ lệ sản phẩm loại A nói chung do nhà máy sản xuất ta chọn mua ngẫu nhiên một sản phẩm ở thò trường. Khi đó tỉ lệ sản phẩm loại A chính là xác suất để sản phẩm đó thuộc loại A. Gọi B là biến cố sản phẩm chọn mua thuộc loại A. A 1 , A 2 , A 3 lần lượt là các biến cố sản phẩm do phân xưởng I, II, III sản xuất. Khi đó A 1 , A 2 , A 3 là một hệ đầy đủ, xung khắc từng đôi và P(A 1 ) = 30% = 0,3; P(A 2 ) = 45% = 0,45; P(A 3 ) = 25% = 0,25. Theo công thức xác suất đầy đủ, ta có: P(B) = P(A 1 )P(B/A 1 ) + P(A 2 )P(B/A 2 ) + P(A 3 )P(B/A 3 ) Theo giả thiết, P(B/A 1 ) = 70% = 0,7; P(B/A 2 ) = 50% = 0,5; P(B/A 3 ) = 90% = 0,9. 8 Suy ra P(B) = 0,66 = 66%. Vậy tỉ lệ sản phẩm loại A nói chung do nhà máy sản xuất là 66%. b) Chọn mua ngẫu nhiên một sản phẩm X ở thò trường. Giả sử đã mua được sản phẩm loại A. Theo bạn, sản phẩm ấy khả năng do phân xưởng nào sản xuất ra nhiều nhất? Giả sử đã mua được sản phẩm loại A. Khi đó biến cố B đã xảy ra. Do đó, để biết sản phẩm loại A đó khả năng do phân xưởng nào sản xuất ra nhiều nhất ta cần so sánh các xác suất điều kiện P(A 1 /B), P(A 2 /B) và P(A 3 /B). Nếu P(A i /B) là lớn nhất thì sản phẩm ấy khả năng do phân xưởng thứ i sản xuất ra là nhiều nhất. Theo công thức Bayes ta có: 11 1 22 2 33 3 P(A )P(B/A ) 0, 3.0,7 21 P(A /B) ; P(B) 0, 66 66 P(A )P(B/A ) 0,45.0, 5 22,5 P(A /B) ; P(B) 0, 66 66 P(A )P(B/A ) 0,25.0,9 22,5 P(A /B) . P(B) 0, 66 66 === === === Vì P(A 2 /B) = P(A 3 /B) > P(A 1 /B) nên sản phẩm loại A ấy khả năng do phân xưởng II hoặc III sản xuất ra là nhiều nhất. c) Chọn mua ngẫu nhiên 121 sản phẩm X (trong rất nhiều sản phẩm X) ở thò trường. 1) Tính xác suất để 80 sản phẩm loại A. 2) Tính xác suất để từ 80 đến 85 sản phẩm loại A. p dụng công thức Bernoulli với n = 121, p = 0,66, ta có: 1) Xác suất để 80 sản phẩm loại A là 80 80 41 80 80 41 121 121 121 P (80) C p q C (0, 66) (0,34) 0,076.== = 2) Xác suất để từ 80 đến 85 sản phẩm loại A là 85 85 85 k k 121 k k k 121 k 121 121 121 k80 k80 k80 P (k) C p q C (0,66) (0,34) 0,3925. −− == = == = ∑∑ ∑ Printed with FinePrint trial version - purchase at www.fineprint.com 9 Bài 1.6: ba cửa hàng I, II và III cùng kinh doanh sản phẩm Y. Tỉ lệ sản phẩm loại A trong ba cửa hàng I, II và III lần lượt là 70%, 75% và 50%. Một khách hàng chọn nhẫu nhiên một cửa hàng và từ đó mua một sản phẩm a) Tính xác suất để khách hàng mua được sản phẩm loại A. b) Giả sử đã mua được sản phẩm loại A. Theo bạn, khả năng người khách hàng ấy đã chọn cửa hàng nào là nhiều nhất? Lời giải Tóm tắt: Cửa hàng I II III Tỉ lệ loại A 70% 75% 50% Chọn nhẫu nhiên một cửa hàng và từ đó mua một sản phẩm. a) Tính xác suất để khách hàng mua được sản phẩm loại A. Gọi B là biến cố sản phẩm chọn mua thuộc loại A. A 1 , A 2 , A 3 lần lượt là các biến cố chọn cửa hàng I, II, III. Khi đó A 1 , A 2 , A 3 là một hệ đầy đủ, xung khắc từng đôi và P(A 1 ) = P(A 2 ) = P(A 3 ) = 1/3. Theo công thức xác suất đầy đủ, ta có: P(B) = P(A 1 )P(B/A 1 ) + P(A 2 )P(B/ A 2 )+ P(A 3 )P(B/A 3 ) Theo giả thiết, P(B/A 1 ) = 70% = 0,7; P(B/A 2 ) = 75% = 0,75; P(B/A 3 = 50% = 0,5. Suy ra P(B) = 0,65 = 65%. Vậy xác suất để khách hàng mua được sản phẩm loại A là 65%. b) Giả sử đã mua được sản phẩm loại A. Theo bạn, khả năng người khách hàng ấy đã chọn cửa hàng nào là nhiều nhất? Giả sử đã mua được sản phẩm loại A. Khi đó biến cố B đã xảy ra. Do đó, để biết sản phẩm loại A đó khả năng khách hàng ấy đã chọn cửa hàng nào là nhiều nhất ta cần so sánh các xác suất điều kiện P(A 1 /B), 10 P(A 2 /B) và P(A 3 /B). Nếu P(A i /B) là lớn nhất thì cửa hàng thứ i nhiều khả năng được chọn nhất. Theo công thức Bayes ta có: 11 1 22 2 33 3 P(A )P(B/A ) (1 / 3).0,7 70 P(A /B) ; P(B) 0, 65 195 P(A )P(B/A ) (1 / 3).0,75 75 P(A /B) ; P(B) 0, 65 195 P(A )P(B/A ) (1 / 3).0,5 50 P(A /B) . P(B) 0, 65 195 === === === Vì P(A 2 /B) > P(A 1 /B) > P(A 3 /B) nên cửa hàng II nhiều khả năng được chọn nhất. Bài 1.7: hai hộp I và II mỗi hộp chứa 12 bi, trong đó hộp I gồm 8 bi đỏ, 4 bi trắng; hộp II gồm 5 bi đỏ, 7 bi trắng. Lấy ngẫu nhiên từ hộp I ba bi rồi bỏ sang hộp II; sau đó lấy ngẫu nhiên từ hộp II bốn bi. a) Tính xác suất để lấy được ba bi đỏ và một bi trắng từ hộp II. b) Giả sử đã lấy được ba bi đỏ và một bi trắng từ hộp II. Tìm xác suất để trong ba bi lấy được từ hộp I hai bi đỏ và một bi trắng. Lời giải Gọi A là biến cố chọn được 3 bi đỏ và 1 bi trắng từ hộp II. A i (i = 0, 1, 2, 3) là biến cố i bi đỏ và (3-i) bi trắng trong 3 bi chọn ra từ hộp I. Khi đó A 0 , A 1 , A 2 , A 3 là một hệ đầy đủ, xung khắc từng đôi và ta có: 03 84 0 3 12 12 84 1 3 12 21 84 2 3 12 30 84 3 3 12 4 P(A ) ; 220 48 P(A ) ; 220 112 P(A ) ; 220 56 P(A ) . 220 CC C CC C CC C CC C == == == == a) Tính xác suất để lấy được 3 bi đỏ và 1 bi trắng từ hộp II. Printed with FinePrint trial version - purchase at www.fineprint.com 11 Theo công thức xác suất đầy đủ, ta có: P(A)=P(A 0 )P(A/A 0 )+P(A 1 )P(A/A 1 )+P(A 2 )P(A/A 2 )+P(A 3 )P(A/A 3 ) Theo công thức tính xác suất lựa chọn, ta 31 510 0 4 15 31 69 1 4 15 31 78 2 4 15 31 87 3 4 15 100 P(A / A ) ; 1365 180 P(A / A ) ; 1365 280 P(A / A ) ; 1365 392 P(A / A ) . 1365 CC C CC C CC C CC C == == == == Suy ra xác suất cần tìm là P(A) = 0,2076. b) Giả sử đã lấy được 3 bi đỏ và 1 bi trắng từ hộp II. Tìm xác suất để trong 3 bi lấy được từ hộp I 2 bi đỏ và 1 bi trắng. Giả sử đã lấy được 3 bi đỏ và 1 bi trắng từ hộp II. Khi đó biến cố A đã xảy ra. Do dó xác suất để trong 3 bi lấy được từ hộp I 2 bi đỏ và 1 bi trắng trong trường hợp này chính là xác suất điều kiện P(A 2 /A). p dụng công thức Bayes, ta có: 22 2 112 280 . P(A )P(A/A ) 220 1365 P(A /A) 0,5030. P(A) 0, 2076 === Vậy xác suất cần tìm là P(A 2 /A) = 0,5030. Bài 1.8: ba hộp mỗi hộp đựng 5 viên bi trong đó hộp thứ nhất 1 bi trắng, 4 bi đen; hộp thứ hai 2 bi trắng, 3 bi đen; hộp thứ ba 3 bi trắng, 2 bi đen. a) Lấy ngẫu nhiên từ mỗi hộp một bi. 1) Tính xác suất để được cả 3 bi trắng. 2) Tính xác suất được 2 bi đen, 1 bi trắng. 3) Giả sử trong 3 viên lấy ra đúng 1 bi trắng.Tính xác suất để bi trắng đó là của hộp thứ nhất. b) Chọn ngẫu nhiên một hộp rồi từ hộp đó lấy ngẫu nhiên ra 3 bi. Tính xác suất được cả 3 bi đen. 12 Lời giải a) Gọi A j (j = 1, 2, 3) là biến cố lấy được bi trắng từ hộp thứ j. Khi đó A 1 , A 2 , A 3 độc lập và 11 22 33 14 P(A ) ; P(A ) ; 55 23 P(A ) ;P(A ) ; 55 32 P(A ) ;P(A ) . 55 == == == 1) Gọi A là biến cố lấy được cả 3 bi trắng. Ta 123 A AAA. = Suy ra P(A) = P(A 1 ) P(A 2 ) P(A 3 ) = 0,048. 2) Gọi B là biến cố lấy 2 bi đen, 1 bi trắng. Ta 123 123 123 B AAA AAA AAA=++ Suy ra P(B) =0,464 . 3) Giả sử trong 3 viên lấy ra đúng 1 bi trắng. Khi đó biến cố B đã xảy ra. Do đó xác suất để bi trắng đó là của hộp thứ nhất trong trường hợp này chính là xác suất điều kiện P(A 1 /B). Theo công thức Nhân xác suất ta có: P(A 1 B) = P(B)P(A 1 /B) Suy ra 1 1 P(A B) P(A /B) . P(B) = Mà 1123 A BAAA= nên lý luận tương tự như trên ta được P(A 1 B) = 0,048. Suy ra P(A 1 /B) =0,1034 . b) Chọn ngẫu nhiên một hộp rồi từ hộp đó lấy ngẫu nhiên ra 3 bi. Tính xác suất được cả 3 bi đen. Gọi A là biến cố lấy được cả 3 bi đen. A 1 , A 2 , A 3 lần lượt là các biến cố chọn được hộp I, II, III. Khi đó A 1 , A 2 , A 3 là một hệ đầy đủ, xung khắc từng đôi và P(A 1 ) = P(A 2 ) = P(A 3 ) = 1/3. Theo công thức xác suất đầy đủ, ta có: P(A) = P(A 1 )P(A/A 1 ) + P(A 2 )P(A/ A 2 )+ P(A 3 )P(A/A 3 ) Theo công thức xác suất lựa chọn, ta có: Printed with FinePrint trial version - purchase at www.fineprint.com 13 03 03 23 14 123 33 55 CC CC 41 P(A/A ) = ;P(A/A ) = ; P(A/A ) =0. 10 10 CC == Suy ra P(A) = 0,1667. Bài 1.9: 20 hộp sản phẩm cùng lọai, mỗi hộp chứa rất nhiều sản phẩm, trong đó 10 hộp của xí nghiệp I, 6 hộp của xí nghiệp II và 4 hộp của xí nghiệp III. Tỉ lệ sản phẩm tốt của các xí nghiệp lần lượt là 50%, 65% và 75%. Lấy ngẫu nhiên ra một hộp và chọn ngẫu nhiên ra 3 sản phẩm từ hộp đó. a) Tính xác suất để trong 3 sản phẩm chọn ra đúng 2 sản phẩm tốt. b) Giả sử trong 3 sản phẩm chọn ra đúng 2 sản phẩåm tốt. Tính xác suất để 2 sản phẩm tốt đó của xí nghiệp I. Lời giải Gọi A là biến cố trong 3 sản phẩm chọn ra đúng 2 sản phẩm tốt. A j (j = 1, 2, 3) là biến cố chọn được hộp của xí nghiệp thứ j. Khi đó A 1 , A 2 , A 3 là một đầy đủ, xung khắc từng đôi và ta có: 1 10 1 1 20 1 6 2 1 20 1 4 3 1 20 10 P(A ) ; 20 6 P(A ) ; 20 4 P(A ) . 20 C C C C C C == == == Mặt khác, từ giả thiết, theo công thức Bernoulli, ta 22 13 22 23 22 33 P(A / A ) C (0, 5) (1 0, 5) 0, 375 P(A / A ) C (0,65) (1 0,65) 0, 443625 P(A / A ) C (0,75) (1 0,25) 0, 421875 =−= =−= =−= Theo công thức xác suất đầy đủ, ta P(A) = P(A 1 )P(A/A 1 ) + P(A 2 )P(A/A 2 ) + P(A 3 )P(A/A 3 ) = (10/20).0,375 + (6/20). 0,443625 + (4/20). 0,421875 = 0,4050. b) Giả sử trong 3 sản phẩm chọn ra đúng 2 sản phẩåm tốt. Khi đó, biến cố A đã xảy ra. Do đó, xác suất để 2 sản phẩm tốt đó của xí nghiệp I chính là xác suất điều kiện P(A 1 /A). 14 p dụng Công thức Bayes và sử dụng kết quả vừa tìm được ở câu a) ta 11 1 P(A )P(A/A ) (10/20).0,375 P(A /A) 0,4630. P(A) 0,4050 === Bài 1.10: 10 sinh viên đi thi, trong đó 3 thuộc loại giỏi, 4 khá và 3 trung bình. Trong số 20 câu hỏi thi qui đònh thì sinh viên lọai giỏi trả lời được tất cả, sinh viên khá trả lời được 16 câu còn sinh viên trung bình được 10 câu. Gọi ngẫu nhiên một sinh viên và phát một phiếu thi gồm 4 câu hỏi thì anh ta trả lời được cả 4 câu hỏi. Tính xác suất để sinh viên đó thuộc loại khá. Lời giải Tóm tắt: Xếp loại sinh viên Giỏi Khá Trung bình Số lượng 3 4 3 Số câu trả lời được/20 20 16 10 Gọi A là biến cố sinh viên trả lời được cả 3 câu hỏi. A 1 , A 2 , A 3 lần lượt là các biến cố sinh viên thuộc loại Giỏi, Khá; Trung bình. Yêu cầu của bài toán là tính xác suất điều kiện P(A 2 /A). Các biến cố A 1 , A 2 , A 3 là một hệ đầy đủ, xung khắc từng đôi, và ta có: P(A 1 ) = 3/10; P(A 2 ) = 4/10; P(A 3 ) = 3/10. Theo công thức Bayes, ta 22 2 P(A )P(A/A ) P(A /A) . P(A) = Mặt khác, theo công thức xác suất đầy đủ, ta P(A) = P(A 1 )P(A/A 1 ) + P(A 2 )P(A/A 2 ) + P(A 3 )P(A/A 3 ). Theo công thức tính xác suất lựa chọn, ta có: 4 20 1 4 20 40 16 4 2 4 20 40 10 10 3 4 20 C P(A / A ) 1; C C C 1820 P(A / A ) ; C4845 CC 210 P(A / A ) . C4845 == == == Printed with FinePrint trial version - purchase at www.fineprint.com 15 Suy ra P(A 2 /A) = 0,3243. Bài 1.11: hai hộp I và II, trong đó hộp I chứa 10 bi trắng và 8 bi đen; hộp II chứa 8 bi trắng và 6 bi đen. Từ mỗi hộp rút ngẫu nhiên 2 bi bỏ đi, sau đó bỏ tất cả các bi còn lại của hai hộp vào hộp III (rỗng). Lấy ngẫu nhiên 2 bi từ hộp III. Tính xác suất để trong 2 bi lấy từ hộp III 1 trắng, 1 đen. Lời giải Gọi A là biến cố bi lấy được 1 trắng, 1 đen. A j (j = 0, 1, 2, 3, 4) là biến cố j bi trắng và (4-j) bi đen trong 4 bi bỏ đi (từ cả hai hộp I và II). Khi đó A 0 , A 1 , A 2 , A 3 , A 4 là một hệ đầy đủ, xung khắc từng đôi. Theo công thức xác suất đầy đủ, ta P(A) = P(A 0 )P(A/A 0 ) + P(A 1 )P(A/A 1 ) + P(A 2 )P(A/A 2 )+ P(A 3 )P(A/A 3 ) + P(A 4 )P(A/A 4 ). trong đó 11 18 10 0 2 28 CC 10 P(A/A ) = 21 C = (Vì khi A 0 đã xảy ra thì trong hộp III 28 bi gồm 18 trắng , 10 đen). Tương tự, 11 11 17 11 16 12 12 22 28 28 11 11 15 13 14 14 34 22 28 28 CC CC 187 32 P(A/A ) = ;P(A/A ) = ; 378 63 CC CC CC 65 14 P(A/A ) = ;P(A/A ) = . 126 27 CC == == Bây giờ ta tính P(A 0 ); P(A 1 ); P(A 2 ); P(A 3 ); P(A 4 ). Gọi B i , C i (i = 0, 1, 2) lần lượt là các biến cố i bi trắng và (2 - i) bi đen trong 2 bi được chọn ra từ hộp I, hộp II. Khi đó - B 0 , B 1 , B 2 xung khắc và ta có: 02 11 20 10 8 10 8 10 8 012 222 18 18 18 28 80 5 P(B ) ; P(B ) ;P(B ) . 153 153 17 CC CC CC CCC == == == - C 0 , C 1 , C 2 xung khắc và ta có: 02 11 20 86 86 86 012 222 14 14 14 15 48 28 P(C ) ; P(C ) ;P(C ) . 91 91 91 CC CC CC CCC == == == 16 - B i và C j độc lập. - Tổng số bi trắng trong 4 bi chọn ra phụ thuộc vào các biến cố B i và C j theo bảng sau: C 0 C 1 C 2 B 0 0 1 2 B 1 1 2 3 B 2 2 3 4 A 0 = B 0 C 0 ⇒ P(A 0 ) = P(B 0 )P(C 0 ) = 20/663. A 1 = B 0 C 1 + B 1 C 0 ⇒ P(A 1 ) = P(B 0 )P(C 1 ) + P(B 1 )P(C 0 ) = 848/4641. A 2 = B 0 C 2 + B 1 C 1 + B 2 C 0 ⇒ P(A 2 ) = P(B 0 )P(C 2 )+P(B 1 )P(C 1 )+P(B 2 )P(C 0 ) =757/1989. A 3 = B 1 C 2 + B 2 C 1 ⇒ P(A 3 ) = P(B 1 )P(C 2 )+P(B 2 )P(C 1 ) = 4400/13923. A 4 = B 2 C 2 ⇒ P(A 4 ) = P(B 2 )P(C 2 ) = 20/221. Từ đó suy ra P(A) = 0,5080. Bài 1.12: hai hộp cùng cỡ. Hộp thứ nhất chứa 4 bi trắng 6 bi xanh, hộp thứ hai chứa 5 bi trắng và 7 bi xanh. Chọn ngẫu nhiên một hộp rồi từ hộp đó lấy ra 2 bi thì được 2 bi trắng. Tính xác suất để viên bi tiếp theo cũng lấy từ hộp trên ra lại là bi trắng. Lời giải Gọi A 1 là biến cố 2 bi lấy đầu tiên là bi trắng. A 2 là biến cố bi lấy lần sau là bi trắng. Bài tóan yêu cầu tính P(A 2 /A 1 ). Theo công thức nhân xác suất, ta P(A 1 A 2 ) = P(A 1 ) P(A 2 /A 1 ). Suy ra 12 21 1 P(A A ) P(A / A ) P(A ) = . Bây giờ ta tính các xác suất P(A 1 ) và P(A 1 A 2 ). Gọi B 1 , B 2 lần lượt là các biến cố chọn được hộp I, hộp II. Khi đó B 1 , B 2 là một hệ đầy đủ, xung khắc từng đôi và ta có: P(B 1 ) = P(B 2 ) = 0,5. Theo công thức xác suất đầy đủ, ta P(A 1 ) = P(B 1 ) P(A 1 / B 1 ) + P(B 2 ) P(A 1 / B 2 ) Printed with FinePrint trial version - purchase at www.fineprint.com 17 Mà 20 46 11 2 10 20 57 12 2 12 6 P(A / B ) ; 45 10 P(A / B ) . 66 CC C CC C == == nên P(A 1 ) = 47/330. Theo công thức xác suất đầy đủ, ta P(A 1 A 2 ) = P(B 1 ) P(A 1 A 2 / B 1 ) + P(B 2 ) P(A 1 A 2 / B 2 ). Mà 12 1 1 1 2 11 12 2 1 2 2 12 62 1 P(A A / B ) P(A / B )P(A / A B ) ; 45 8 30 10 3 1 P(A A /B ) P(A /B )P(A /A B ) . 66 10 22 === === nên P(A 1 A 2 ) = 13/330. Suy ra xác suất cần tìm là P(A 2 /A 1 ) =13/47= 0,2766. Bài 1.13: Một lô hàng gồm a sản phẩm loại I và b sản phẩm loại II được đóng gới để gửi cho khách hàng. Nơi nhận kiểm tra lại thấy thất lạc 1 sản phẩm. Chọn ngẫu nhiên ra 1 sản phẩm thì thấy đó là sản phẩm loại I. Tính xác suất để sản phẩm thất lạc cũng thuộc loại I. Lời giải Gọi A là biến cố sản phẩm được chọn ra thuộc lọai I. A 1 , A 2 lần lượt là các biến cố sản phẩm thất lạc thuộc loại I, loại II. Yêu cầu của bài toán là tính xác suất điều kiện P(A 1 /A). Ta thấy A 1 , A 2 là một hệ đầy đủ, xung khắc từng đôi và 10 01 ab ab 12 11 ab ab CC CC ab P(A ) ; P(A ) . Cab Cab ++ == == ++ Theo công thức Bayes, ta 11 11 1 1122 P(A )P(A / A ) P(A )P(A / A ) P(A / A) P(A) P(A )P(A / A ) P(A )P(A / A ) == + Mà 10 10 a1 b a b1 12 11 ab1 ab1 CC CC a1 a P(A / A ) ; P(A / A ) . C ab1 C ab1 −− +− +− − == == +− +− nên 18 1 aa1 . a1 abab1 P(A / A) aa1 b a ab1 abab1abab1 − − ++− == − +− + + +− + +− Bài 1.14: 3 hộp phấn, trong đó hộp I chứa 15 viên tốt và 5 viên xấu, hộp II chứa 10 viên tốt và 4 viên xấu, hộp III chứa 20 viên tốt và 10 viên xấu. Ta gieo một con xúc xắc cân đối. Nếu thấy xuất hiện mặt 1 chấm thì ta chọn hộp I; nếu xuất hiện mặt 2 hoặc 3 chấm thì chọn hộp II, còn xuất hiện các mặt còn lại thì chọn hộp III. Từ hộp được chọn lấy ngẫu nhiên ra 4 viên phấn. Tìm xác suất để lấy được ít nhất 2 viên tốt. Lời giải Gọi A là biến cố chọn được ít nhất 2 viên phấn tốt. A j (j =1,2, 3) là biến cố chọn được hộp thứ j. Khi đó A 1 , A 2 , A 3 là hệ đầy đủ, xung khắc từng đôi và ta có: - A 1 xảy ra khi và chỉ khi thảy con xúc xắc, xuất hiện mặt 1 chấm, do đó P(A 1 ) = 1/6. - Tương tự, P(A 2 ) = 2/6; P(A 3 ) = 3/6. Theo công thức xác suất đầy đủ, ta P(A) = P(A 1 )P(A/A 1 ) + P(A 2 )P(A/A 2 ) + P(A 3 )P(A/A 3 ). Từ giả thiết ta có: 22 31 40 15 5 15 5 15 5 1 444 20 20 20 22 31 40 10 4 10 4 10 4 2 444 14 14 14 22 31 40 20 10 20 10 20 10 3 444 30 30 30 C C C C C C 4690 P(A / A ) ; C C C 4845 CC CC CC 960 P(A / A ) ; C C C 1001 C C C C C C 24795 P(A / A ) . C C C 27405 =++= =++= =++= Suy ra P(A) =0,9334. Bài 1.15: hai kiện hàng I và II. Kiện thứ nhất chứa 10 sản phẩm, trong đó 8 sản phẩm loại A. Kiện thứ hai chứa 20 sản phẩm, trong đó 4 sản phẩm loại A. Lấy từ mỗi kiện 2 sản phẩm. Sau đó, trong 4 sản phẩm thu được chọn ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm chọn ra sau cùng đúng 1 sản phẩm loại A. Lời giải Printed with FinePrint trial version - purchase at www.fineprint.com 19 Gọi C là biến cố trong 2 sản phẩm chọn ra sau cùng đúng 1 sản phẩm loại A. A j (j = 0, 1, 2, 3, 4 ) là biến cố j sản phẩm lọai A và (4-j) sản phẩm lọai B trong 4 sản phẩm lấy từ hai kiện I và II. Khi đó A 0 , A 1 , A 2 , A 3 , A 4 là một hệ đầy đủ, xung khắc từng đôi. Theo công thức xác suất đầy đủ, ta P(C) = P(A 0 )P(C/A 0 ) + P(A 1 )P(C/A 1 ) + P(A 2 )P(C/A 2 ) + P(A 3 )P(C/A 3 ) + P(A 4 )P(C/A 4 ). Ta có: 0 11 13 1 2 4 11 22 2 2 4 11 31 3 2 4 4 P(C/A ) = 0; CC 3 P(C/A ) = 6 C CC 4 P(C/A ) = 6 C CC 3 P(C/A ) = 6 C P(C/A ) =0. = = = Bây giờ ta tính P(A 1 ); P(A 2 ); P(A 3 ). Gọi B i , C i (i = 0, 1, 2) lần lượt là các biến cố i sp A và (2 - i) sp B trong 2 sp được chọn ra từ kiện I, kiện II. Khi đó - B 0 , B 1 , B 2 xung khắc từng đôi và ta có: 02 82 0 2 10 11 82 1 2 10 20 82 2 2 10 1 P(B ) ; 45 16 P(B ) ; 45 28 P(B ) . 45 CC C CC C CC C == == == - C 0 , C 1 , C 2 xung khắc từng đôi và ta có: 20 02 416 0 2 20 11 416 1 2 20 20 416 2 2 20 120 P(C ) ; 190 64 P(C ) ; 190 6 P(C ) ; 190 CC C CC C CC C == == == - B i và C j độc lập. - Tổng số sp A trong 4 sp chọn ra phụ thuộc vào các biến cố B i và C j theo bảng sau: C 0 C 1 C 2 B 0 0 1 2 B 1 1 2 3 B 2 2 3 4 Ta có: A 1 = B 0 C 1 + B 1 C 0 . A 2 = B 0 C 2 + B 1 C 1 + B 2 C 0 . A 3 = B 1 C 2 + B 2 C 1 . Từ đây, nhờ các công thưcù cộng và nhân xác suất ta tính được: P(A 1 ) = 0,2320 ; P(A 2 ) = 0,5135 ; P(A 3 ) = 0,2208 . Suy ra xác suất cần tìm là P(C) = 0,5687. Bài 1.16: Một xạ thủ bắn 10 viên đạn vào một mục tiêu. Xác suất để 1 viên đạn bắn ra trúng mục tiêu là 0,8 . Biết rằng: Nếu 10 viên trúng thì mục tiêu chắc chắn bò diệt. Nếu từ 2 đến 9 viên trúng thì mục tiêu bò diệt vơiù xác suất 80%. Nếu 1 viên trúng thì mục tiêu bò diệt với xác suất 20%. a) Tính xác suất để mục tiêu bò diệt. b) Giả sử mục tiêu đã bò diệt. Tính xác suất 10 viên trúng. Lời giải Tóm tắt: - Số viên bắn ra: 10 viên. - Xác suất trúng của mỗi viên: 0,8. Printed with FinePrint trial version - purchase at www.fineprint.com [...]... thức Bayes, ta có: 24 P(A 2 )P(A / A 2 ) P(A 2 / A) = = P(A) * 77 153 = 0, 4318 0, 5035 0, 432 - 25 Printed with FinePrint trial version - purchase at www.fineprint.com BÀI GIẢI a) Xác suất ít nhất 1 chai bia Sài Gòn bò bể là XÁC SUẤT THỐNG P(X 1 ≥ 1) = 1 − P(X 1 = 0) = 1 − (GV: Trần Ngọc Hội – 2009) CHƯƠNG 2 ĐẠI LƯNG NGẪU NHIÊN VÀ PHÂN PHỐI XÁC SUẤT Bài 2.1: Nước giải khát được... sản xuất chính là xác suất điều kiện P(A2/D) Theo công thức nhân xác suất ta có: P(A 2D) P(D) P(A 2 /D) = a) Gọi A là biến cố lấy được 1sp tốt, 1sp xấu từ lô I Theo công thức xác suất đầy đủ, ta có: P(A) = P(A0)P(A/A0) + P(A1)P(A/A1) + P(A2)P(A/A2) + P(A3)P(A/A3) Từ giả thiết ta suy ra trong lô I 15.60% = 9 sp tốt và 6 sp xấu Do đó theo công thức tính xác suất lựa chọn, ta có: P(A / A 0 ) =... chai coca và 800 chai nước trái cây Xác suất để 1 chai mỗi loại bò bể trên đường đi tương ứng là 0,2%; 0,11% và 0,3% Nếu không quá 1 chai bò bể thì lái xe được thưởng a) Tính xác suất ít nhất 1 chai bia Sài Gòn bò bể b) Tính xác suất để lái xe được thưởng c) Lái xe phải chở ít mất mấy chuyến để xác suất ít nhất một chuyến được thưởng không nhỏ hơn 0,9? Lời giải Tóm tắt: Loại Bia Sài Coca Nước... kiện B và 2000 linh kiện C Xácsuất hỏng của ba linh kiện đó lần lượt là 0,02%; 0,0125% và 0,005% Máy tính ngưng hoạt động khi số linh kiện hỏng nhiều hơn 1 Các linh kiện hỏng độc lập với nhau a) Tính xácsuất để ít nhất 1 linh kiện B bò hỏng b) Tính xác suất để máy tính ngưng hoạt động c) Giả sử trong máy đã 1 linh kiện hỏng Tính xác suất để máy tính ngưng hoạt động Lời giải - A 1000 0,02% B C 800... Do đó xác suất 10 viên trúng trong trường hợp này chính là xác suất điều kiện P(A3/A) Theo công thức Bayes, ta có: P(A 3 / A) = P(A 3 )P(A / A 3 ) P(A) Từ đây ta tính được P(A3/A) = 0,1307 Bài 1.17: Một máy sản xuất sản phẩm với tỉ lệ sản phẩm loại A là 60% Một lô hàng gồm 10 sản phẩm với tỉ lệ sản phẩm loại A là 60% Cho máy sản xuất 2 sản phẩm và từ lô hàng lấy ra 3 sản phẩm a) Tính xác suất. .. D(X) = 0,5829 Bài 2.15: ba lô sản phẩm, mỗi lô 20 sản phẩm Lô thứ i i+4 sản phẩm loại A (i = 1, 2, 3) a) Chọn ngẫu nhiên một lô rồi từ lô đó lấy ra 3 sản phẩm Tính xác suất để trong 3 sản phẩm được lấy ra đúng 1 sản phẩm loại A b) Từ mỗi lô lấy ra 1 sản phẩm Gọi X là tổng số sản phẩm loại A trong 3 sản phẩm được lấy ra Tìm luật phân phối của X và tính Mod(X), M(X), D(X) Lời giải 0 p0 1... kiện được kiểm tra, thì X phân phối nhò thức X ∼ B(n,p) với n = 144, p = 0,3622 Vì n = 144 khá lớn và p = 0,3622 không quá gần 0 cũng không quá gần 1 nên ta thể xem X phân phối chuẩn như sau: X ∼ N(μ, σ2) với μ = np = 144.0,3622 = 52,1568; σ = npq = 144.0, 3622.(1 − 0, 3622) = 5, 7676 a) Xác suất để 53 kiện được nhận là P(X=53) = 6,84% (Tương tự Bài 21) b) Xác suất để từ 52 đến 56 kiện được... là P(52 ≤ X ≤ 56) = 26,05% (Tương tự Bài 21) c) Phải kiểm tra ít nhất bao nhiêu kiện để xác suất ít nhất 1 kiện được nhận không nhỏ hơn 95%? Gọi n là số kiện cần kiểm tra và D là biến cố ít nhất 1 kiện được nhận Yêu cầu bài toán là xác đònh n nhỏ nhất sao cho P(D) ≥ 0,95 8 Biến cố đối lập của D là D : không kiện nào được nhận Theo chứng minh trên, xác suất để một kiện được nhận là p = 0,3622... 32,97% 0! Bài 2.3: Trọng lượng của một loại sản phẩm được quan sát là một đại lượng ngẫu nhiên phân phối chuẩn với trung bình 50kg và phương sai 100kg2 Những sản phẩm trọng lượng từ 45kg đến 70kg được xếp vào loại A Chọn ngẫu nhiên 100 sản phẩm (trong rất nhiều sản phẩm) Tính xác suất để a) đúng 70 sản phẩm loại A b) không quá 60 sản phẩm loại A c) ít nhất 65 sản phẩm loại A Lời giải Trước... 3 giá trò: 2, 3, 4 Luật phân phối của X dạng: 25 Printed with FinePrint trial version - purchase at www.fineprint.com 26 BÀI GIẢI XÁC SUẤT THỐNG (GV: Trần Ngọc Hội – 2009) Bài 4.2 Trọng lượng của một sản phẩm phân phối chuẩn với trọng lượng trung bình là 500g Sau một thời gian sản xuất, người ta nghi ngờ trọng lượng trung bình của loại sản phẩm này xu hướng giảm nên tiến hành kiểm tra 25 . at www.fineprint.com 25 22 2 77 0, 432. P(A )P(A / A ) 153 P(A / A) 0, 4318. P(A) 0,5035 === * Printed with FinePrint trial version - purchase at www.fineprint.com 1 BÀI GIẢI. lần kiểm tra thứ 3. Ta có: Printed with FinePrint trial version - purchase at www.fineprint.com 5 A = T 1 T 2 T 3 . Suy ra P(A) = P(T 1 T 2 T 3 ) = P(T 1 ) P(T 2 /T 1 ) P(T 3 / T 1 T 2 ). Công thức Nhân xác suất, ta có Printed with FinePrint trial version - purchase at www.fineprint.com 7 P(B) = P(D 1 ) + P(X 1 )P(D 2 /X 1 ) + P(X 1 )P(X 2 /X 1 )P(D 3 /X 1 X 2 ) + P(X 1 )P(X 2 /X 1 )P(X 3 /X 1 X 2 )P(D 4 /X 1 X 2 X 3 )
- Xem thêm -

Xem thêm: tổng hợp bài tập xác suất thống kê có lời giải, tổng hợp bài tập xác suất thống kê có lời giải,

Từ khóa liên quan