bộ giáo dục đào tạo Kỳ thi tuyển sinh đại học, cao ĐẳnG năm 2002 -Môn thi : toán dethivn.com Đề thức (Thời gian lµm bµi: 180 phót) _ Câu I (ĐH : 2,5 điểm; CĐ : 3,0 điểm) Cho hàm số : y = − x + 3mx + 3(1 − m ) x + m − m (1) ( m tham số) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = Tìm k để phơng tr×nh: − x + x + k − 3k = cã ba nghiƯm ph©n biệt Viết phơng trình đờng thẳng qua hai điểm cực trị đồ thị hàm số (1) Câu II.(ĐH : 1,5 điểm; CĐ: 2,0 điểm) log 32 x + log 32 x + − 2m − = Cho phơng trình : m = Giải phơng trình (2) (2) ( m tham số) Tìm m để phơng trình (2) có nghiệm thuộc đoạn [ ; 3 ] Câu III (ĐH : 2,0 điểm; CĐ : 2,0 ®iÓm ) cos 3x + sin 3x Tìm nghiệm thuộc khoảng (0 ; ) phơng tr×nh: 5 sin x + = cos x + + sin x Tính diện tích hình phẳng giới hạn ®−êng: y =| x − x + | , y = x + Câu IV.( ĐH : 2,0 điểm; CĐ : 3,0 điểm) Cho hình chóp tam giác S ABC đỉnh S , có độ dài cạnh đáy a Gọi M N lần lợt trung điểm cạnh SB SC Tính theo a diện tích tam giác AMN , biết mặt phẳng ( AMN ) vuông góc với mặt phẳng ( SBC ) Trong không gian với hệ toạ độ Đêcac vuông góc Oxyz cho hai đờng thẳng: x = 1+ t x − 2y + z − = vµ ∆ : y = + t ∆1 : x + y − 2z + = z = + 2t a) Viết phơng trình mặt phẳng ( P) chứa đờng thẳng song song với đờng thẳng b) Cho điểm M (2;1;4) Tìm toạ độ điểm H thuộc đờng thẳng cho đoạn thẳng MH có độ dài nhỏ Câu V.( ĐH : 2,0 điểm) Trong mặt phẳng với hệ toạ độ Đêcac vuông góc Oxy , xét tam giác ABC vuông A , phơng trình đờng thẳng BC lµ x − y − = 0, đỉnh A B thuộc trục hoành bán kính đờng tròn nội tiếp Tìm tọa độ trọng tâm G tam giác ABC Cho khai triĨn nhÞ thøc: −x x −1 −x x −1 x −1 − x x −1 − x 2 + = C n0 2 + C n1 2 + L + C nn −1 2 + C nn ( n số nguyên dơng) BiÕt r»ng khai triĨn ®ã C n = 5C n số hạng thứ t 20n , tìm n vµ x HÕt Ghi chó: 1) ThÝ sinh thi cao đẳng không làm Câu V n n n −1 n −1 n 2) C¸n bé coi thi không giải thích thêm Họ tên thí sinh: dethivn.com Sè b¸o danh: