Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Dãy số nào sau đây có giới hạn là 0? A ( − 5 3 )n B ([.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Dãy !n số sau có giới !n hạn 0? A − B e !n C Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin 2x B − sin 2x C −1 + sin x cos x x+2 bằng? Câu Tính lim x→2 x A B C 1−n Câu [1] Tính lim bằng? 2n + 1 1 A B − C 2 x −1 Câu Tính lim x→1 x − A −∞ B C !n D D + sin 2x D D D +∞ Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x)g(x)] = ab B lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ f (x) a C lim [ f (x) + g(x)] = a + b D lim = x→+∞ x→+∞ g(x) b √ √ 4n2 + − n + Câu Tính lim 2n − 3 A +∞ B C D 2 2n − Câu Tính lim 2n + 3n + A B C +∞ D −∞ x−3 Câu [1] Tính lim bằng? x→3 x + A B −∞ C D +∞ 2n + Câu 10 Tìm giới hạn lim n+1 A B C D 1 Câu 11 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Câu 12 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m ≥ C m ≤ D m > − xy Câu 13 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 + 19 11 − 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 14 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 13 C 2020 D log2 13 Trang 1/5 Mã đề Câu 15 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D Câu 16 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 Câu 17 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m > C m < D m ≤ 4 4 Câu 18 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm q Câu 19 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [−1; 0] C m ∈ [0; 4] D m ∈ [0; 2] √ √ − 3m + = có nghiệm 3 C ≤ m ≤ D < m ≤ 4 ! 3n + Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a2 − 4a = Tổng phần tử n+2 S A B C D ! 1 + + ··· + Câu 22 Tính lim 1.2 2.3 n(n + 1) C D A B n−1 Câu 23 Tính lim n +2 A B C D cos n + sin n Câu 24 Tính lim n2 + A B −∞ C +∞ D 2 + + ··· + n Câu 25 [3-1133d] Tính lim n3 A B +∞ C D 3 Câu 26 Dãy số sau có giới hạn 0? n2 − n2 − 3n n2 + n + 1 − 2n A un = B u = C u = D un = n n 2 5n − 3n n (n + 1) 5n + n2 Câu 20 [12215d] Tìm m để phương trình x+ A m ≥ B ≤ m ≤ Câu 27 Tính lim A 1−x2 − 4.2 x+ 1−x2 2n2 − 3n6 + n4 B C D Câu 28 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = B Nếu lim un = +∞ lim = a > lim(un ) = +∞ Trang 2/5 Mã đề ! un C Nếu lim un = a < lim = > với n lim = −∞ v n ! un = +∞ D Nếu lim un = a > lim = lim Câu 29 Dãy số sau có giới hạn khác 0? n+1 B A n n Câu 30 Tính lim A 7n2 − 2n3 + 3n3 + 2n2 + B C sin n n C - D √ n D Câu 31 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B a C D a A 2a √ Câu 32 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vuông góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 58 3a 38 a 38 B C D A 29 29 29 29 Câu 33 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a B C 2a D A a 2 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab 1 B √ A C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 A a 57 B C D 19 17 19 d = 30◦ , biết S BC tam giác Câu 36 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 26 16 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ a b2 + c2 c a2 + b2 b a2 + c2 abc b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C a D Trang 3/5 Mã đề 0 0 Câu 39.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 40 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B C a D Câu 41 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C D u(x) Câu 42 Z Các khẳng định sau Z sai? f (x)dx = F(x) +C ⇒ A Z C f (x)dx = F(x) + C ⇒ f (u)dx = F(u) +C B Z f (t)dt = F(t) + C D Z Z Z k f (x)dx = k f (x)dx, k số !0 f (x)dx = f (x) Câu 43 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (II) sai C Khơng có câu D Câu (I) sai sai Câu 44 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 46 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z D f (x)dx = f (x) Trang 4/5 Mã đề Câu 47 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B Cả ba câu sai C F(x) = G(x) khoảng (a; b) D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 48 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án √ B F(x) = x nguyên hàm hàm số f (x) = x C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 49 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) − g(x))dx = f (x)dx − g(x)dx B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z C k f (x)dx = f f (x)dx, k ∈ R, k , D f (x)g(x)dx = f (x)dx g(x)dx Câu 50 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C xα dx = B xα+1 + C, C số α+1 Z D 0dx = C, C số dx = ln |x| + C, C số x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A B C C A C 12 13 C 14 15 A B C B D 16 A D 17 B 21 23 D 10 11 19 B 18 C 20 C 22 C B D 24 A 25 C 26 D 27 C 28 D 29 A 31 33 D B D 35 37 A 39 B 41 43 45 D C 32 C 34 B 36 B 38 B 40 B 42 A 44 A C D 46 A 48 47 A 49 30 D 50 B C ... C, C số x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A B C C A C 12 13 C 14 15 A B C B D 16 A D 17 B 21 23 D 10 11 19 B 18 C 20 C 22... n (n + 1) 5n + n2 Câu 20 [122 15d] Tìm m để phương trình x+ A m ≥ B ≤ m ≤ Câu 27 Tính lim A 1−x2 − 4.2 x+ 1−x2 2n2 − 3n6 + n4 B C D Câu 28 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un... Giá trị a + 2b B C D A 2 Câu 17 [122 4d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m > C m < D m ≤ 4 4 Câu 18 [122 12d] Số nghiệm phương trình x−3 x−2