1. Trang chủ
  2. » Tất cả

Đề ôn thi toán thpt khối 12 (144)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 116,72 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim 2n + 1 3n + 2 A 1 2 B 3 2 C 0 D 2 3[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2n + Câu Tính giới hạn lim 3n + A B 2 x − 5x + Câu Tính giới hạn lim x→2 x−2 A −1 B x−3 Câu [1] Tính lim bằng? x→3 x + A −∞ B +∞ 2n + Câu Tìm giới hạn lim n+1 A B D C D C D C D Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin x cos x B −1 + sin 2x C − sin 2x x+2 bằng? Câu Tính lim x→2 x A B C Câu Phát biểu sau sai? A lim k = n C lim qn = (|q| > 1) Câu !Dãy số sau có giới !n hạn 0? n A B e √ √ 4n2 + − n + Câu Tính lim 2n − 3 A B x−2 Câu 10 Tính lim x→+∞ x + A − B C D + sin 2x D B lim un = c (un = c số) D lim = n !n C − !n D C D +∞ C −3 D − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 11 + 19 18 11 − 29 C Pmin = D Pmin = 21 Câu 11 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 − 19 A Pmin = √ 11 − B Pmin = Câu 12 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e + B xy = −e − C xy0 = ey + D xy0 = ey − Câu 13 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D Trang 1/5 Mã đề Câu 14 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 √ i h có nghiệm thuộc đoạn 1; A m ∈ [0; 4] B m ∈ [−1; 0] C m ∈ [0; 2] q x+ log23 x + 1+4m−1 = D m ∈ [0; 1] Câu 15 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m ≤ C m ≥ D m < √ Câu 16 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 63 C Vơ số D 64 Câu 17 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (2; 4; 4) C (1; 3; 2) D (2; 4; 6) Câu 18 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B 13 C log2 13 D log2 2020 log 2x Câu 19 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x − ln 2x B y0 = C y0 = A y0 = D y0 = 3 2x ln 10 2x ln 10 x x ln 10 Câu 20 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D n−1 Câu 21 Tính lim n +2 A B C D ! 1 Câu 22 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D Câu 23 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ ! un C Nếu lim un = a > lim = lim = +∞ ! un = D Nếu lim un = a , lim = ±∞ lim Câu 24 Dãy số sau có giới hạn 0? n2 − − 2n n2 − 3n n2 + n + B u = C u = D u = A un = n n n 5n − 3n2 5n + n2 n2 (n + 1)2 12 + 22 + · · · + n2 Câu 25 [3-1133d] Tính lim n3 A B C +∞ D 3 + + ··· + n Câu 26 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B lim un = D Dãy số un khơng có giới hạn n → +∞ C lim un = Trang 2/5 Mã đề Câu 27 Tính lim A Câu 28 Tính lim A - 2n2 − 3n6 + n4 B C D 7n2 − 2n3 + 3n3 + 2n2 + B C 1 + ··· + Câu 29 [3-1131d] Tính lim + 1+2 + + ··· + n A B C 2 D ! D +∞ ! 3n + 2 Câu 30 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S √ BC) √ √ a 57 a 57 2a 57 B C D A a 57 19 17 19 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 33 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 5a 8a 2a A B C D 9 9 Câu 34 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a C D A a B 2 Câu 35 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B a C a D Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 c a2 + b2 a b2 + c2 abc b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 √ Câu 37 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a 58 3a a 38 A B C D 29 29 29 29 Trang 3/5 Mã đề Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a B C D A a 6 Câu 39 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vuông góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a C a B D A 2a 2 d = 120◦ Câu 40 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 2a C 4a D Câu 41 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề D (I) (III) Câu 42 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 43 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) xác định K B f (x) có giá trị lớn K D f (x) liên tục K Câu 44 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 45 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C xα dx = xα+1 + C, C số α+1 dx = ln |x| + C, C số Z x D 0dx = C, C số B Câu 46 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trang 4/5 Mã đề Trong hai khẳng định A Chỉ có (I) B Cả hai sai C Chỉ có (II) D Cả hai Câu 47 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B Cả ba câu sai C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 48 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 49 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ C F(x) = x nguyên hàm hàm số f (x) = x D Cả ba đáp án Câu 50 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A C B A C A B 10 B 11 B 12 13 B 14 15 17 D 18 19 D 20 A 21 A C D 25 B 16 A C 23 D C 22 B 24 B 26 27 A C 28 A 29 B 30 A 31 B 32 A 33 C 34 A 35 B 36 C 37 B 38 C 39 B 40 41 B 42 B 44 B 43 D 45 C 46 47 C 48 49 C 50 A D C B ... số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A C B A C A B 10 B 11 B 12 13 B 14 15 17 D 18 19 D 20 A 21 A C D 25 B 16 A C 23 D C... G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề D (I) (III)... C (1; 3; 2) D (2; 4; 6) Câu 18 [122 21d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B 13 C log2 13 D log2 2020 log 2x Câu 19 [122 9d] Đạo hàm hàm số y = x2 −

Ngày đăng: 10/03/2023, 23:47

w