Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim 1 − 2n 3n + 1 bằng? A 2 3 B 1 C − 2 3 D 1[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 1 − 2n Câu [1] Tính lim bằng? 3n + B A C − D Câu Phát biểu sau sai? = n D lim un = c (un = c số) A lim qn = (|q| > 1) C lim k = n B lim Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A f (x) có giới hạn hữu hạn x → a B lim f (x) = f (a) x→a C lim+ f (x) = lim− f (x) = +∞ x→a D lim+ f (x) = lim− f (x) = a x→a x→a Câu Dãy số có giới hạn 0? n3 − 3n A un = n2 − 4n B un = n+1 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B −1 x→a !n C un = !n −2 D un = C D Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ A lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ C lim [ f (x)g(x)] = ab x→+∞ 2n + n+1 A B 2−n Câu Giá trị giới hạn lim n+1 A −1 B 4x + Câu [1] Tính lim bằng? x→−∞ x + A −1 B B lim [ f (x) + g(x)] = a + b x→+∞ f (x) a D lim = x→+∞ g(x) b Câu Tìm giới hạn lim Câu 10.! Dãy số sau có giới !n hạn 0? n A B e C D C D C D −4 !n C − !n D Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = e + C xy0 = ey − D xy0 = −ey − Câu 11 [3-12217d] Cho hàm số y = ln A xy0 = −ey + 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 11 − 11 + 19 C Pmin = D Pmin = Câu 12 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x + √ y √ 18 11 − 29 11 − 19 A Pmin = B Pmin = 21 Trang 1/5 Mã đề Câu 13 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C D Câu 14 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D Câu 15 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b C D A B 2 Câu 16 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 3) C (2; 4; 6) D (2; 4; 4) log(mx) Câu 17 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m = C m < D m < ∨ m > log 2x Câu 18 [1229d] Đạo hàm hàm số y = x2 1 − ln 2x − ln 2x − log 2x A y0 = B y0 = C y0 = D y0 = 2x ln 10 2x ln 10 x ln 10 x3 Câu 19 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Câu 20 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 21 Phát biểu sau sai? A lim un = c (Với un = c số) C lim k = với k > n B lim qn = với |q| > 1 D lim √ = n un Câu 22 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C −∞ D n−1 Câu 23 Tính lim n +2 A B C D 7n − 2n + Câu 24 Tính lim 3n + 2n2 + A B C D - 3 Câu 25 Dãy số sau có giới hạn khác 0? n+1 sin n A B C D √ n n n n ! 3n + Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a2 − 4a = Tổng phần tử n+2 S A B C D Câu 27 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương Trang 2/5 Mã đề (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B 12 + 22 + · · · + n2 n3 B +∞ C D Câu 28 [3-1133d] Tính lim A C D Câu 29 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a , lim = ±∞ lim = v! n un = +∞ C Nếu lim un = a > lim = lim ! un D Nếu lim un = a < lim = > với n lim = −∞ Câu 30 Dãy số sau có giới hạn 0? n2 − n2 − 3n B u = A un = n n2 5n − 3n2 C un = n2 + n + (n + 1)2 D un = − 2n 5n + n2 Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C D √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 32 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B a C D A 2 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ a b2 + c2 c a2 + b2 b a2 + c2 abc b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 17 19 19 Trang 3/5 Mã đề Câu 37 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a B D C 2a A a Câu 38 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a A B a C D 2 Câu 39 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 8a 2a 5a A B C D 9 9 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a B C D A a 6 Câu 41 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R B Câu 42 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị lớn K B f (x) có giá trị nhỏ K D f (x) liên tục K Câu 43 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z B f (x)dx = f (x) f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 44 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Chỉ có (II) C Cả hai sai D Cả hai Câu 45 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B F(x) = x2 nguyên hàm hàm số f (x) = 2x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D Cả ba đáp án Trang 4/5 Mã đề Câu 46 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (III) sai C Câu (I) sai D Khơng có câu sai Câu 47 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C xα dx = dx = ln |x| + C, C số Z x D dx = x + C, C số B xα+1 + C, C số α+1 Câu 48 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R B Nếu Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 49 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Chỉ có (II) C Chỉ có (I) D Cả hai câu sai Câu 50 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) − g(x))dx = f (x)dx − g(x)dx B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z C f (x)g(x)dx = f (x)dx g(x)dx D k f (x)dx = f f (x)dx, k ∈ R, k , - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C B C D D D A D C 10 11 C 12 C 14 C D 13 15 B 16 C 17 B 18 C 19 B 20 C 21 B 22 D D 23 C 24 25 C 26 A 27 D 29 C 31 A 33 B 35 C 37 39 D 28 D 30 D 32 B 34 B 36 D 38 D 40 B 41 C 42 43 C 44 45 A 47 C 49 A D B 46 D 48 D 50 B C ... k , - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C B C D D D A D C 10 11 C 12 C 14 C D 13 15 B 16 C 17 B 18 C 19 B 20 C 21 B 22 D D 23... dương Trang 2/5 Mã đề (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B 12 + 22 + · · · + n2 n3 B +∞ C D Câu 28 [3-1133d] Tính lim A C D Câu 29 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un...Câu 13 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B Vô nghiệm C D Câu 14 [122 19d-2mh202050] Có số nguyên x cho tồn số thực y thỏa