Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số y = f (x) liên tục trên khoảng (a, b) Điều[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b D lim− f (x) = f (a) lim+ f (x) = f (b) Câu Phát biểu sau sai? = n D lim k = n A lim qn = (|q| > 1) B lim C lim un = c (un = c số) Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A + sin 2x B −1 + sin x cos x C − sin 2x x−3 Câu [1] Tính lim bằng? x→3 x + A B +∞ C D −1 + sin 2x D −∞ Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm x+1 x→+∞ 4x + A B √ √ 4n + − n + Câu Tính lim 2n − A +∞ B Câu Tính lim − n2 Câu [1] Tính lim bằng? 2n + 1 A − B 2n + Câu Tính giới hạn lim 3n + 2 A B x−2 Câu 10 Tính lim x→+∞ x + A B − C D C D C D C D C D −3 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ √ 18 11 − 29 11 − 19 11 − = C Pmin = D Pmin = 21 Câu 11 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 + 19 A Pmin = B Pmin Trang 1/5 Mã đề Câu 12 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A (1; 2) B ;3 C 2; D [3; 4) 2 √ ab Câu 13 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Trong khẳng định sau đây, khẳng định đúng? Câu 14 [3-12217d] Cho hàm số y = ln x + A xy0 = ey + B xy0 = −ey − C xy0 = −ey + D xy0 = ey − Câu 15 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m ≥ C m < D m ≤ Câu 16 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m ≥ C m < D m ≤ A m > 4 4 √ Câu 17 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B Vô số C 63 D 62 q Câu 18 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 1] C m ∈ [−1; 0] D m ∈ [0; 2] log(mx) = có nghiệm thực Câu 19 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < B m ≤ C m < ∨ m > D m < ∨ m = Câu 20 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C < m ≤ D ≤ m ≤ 2 + + ··· + n Câu 21 [3-1133d] Tính lim n3 A B +∞ C D 3 cos n + sin n Câu 22 Tính lim n2 + A +∞ B C −∞ D ! 1 + ··· + Câu 23 [3-1131d] Tính lim + 1+2 + + ··· + n A B C D +∞ 2 2n2 − Câu 24 Tính lim 3n + n4 A B C D Câu 25 Dãy số sau có giới hạn khác 0? n+1 sin n B C D √ A n n n n Câu 26 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ Trang 2/5 Mã đề ! un B Nếu lim un = a , lim = ±∞ lim = C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = −∞ D Nếu lim un = a < lim = > với n lim un Câu 27 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ C +∞ D Câu 28 Phát biểu sau sai? B lim √ = n C lim un = c (Với un = c số) D lim k = với k > n ! 3n + 2 Câu 29 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 2 7n − 2n + Câu 30 Tính lim 3n + 2n2 + A B C D - 3 0 0 Câu 31 [3] Cho hình lập phương ABCD.A B C D có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a B C D a A 0 0 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 A C √ D √ B √ 2 2 a +b a +b a +b a2 + b2 √ Câu 33 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 a 38 3a 58 3a B C D A 29 29 29 29 Câu 34 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B 2a C a D a 3a Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S √ BC) √ a 57 2a 57 a 57 A B C D a 57 19 19 17 A lim qn = với |q| > Trang 3/5 Mã đề [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ O đến (S √ BC) √ a 57 2a 57 a 57 A B C D a 57 19 19 17 Câu 38 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C D a 2 Câu 39 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A 2a C a B D Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ abc b2 + c2 b a2 + c2 c a2 + b2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 41 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z f (x)g(x)dx = A Z C f (x)dx g(x)dx Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 42 Z Các khẳng định sau Z sai? A Z C B Z D ( f (x) − g(x))dx = f (x)dx − g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C B f (x)dx = F(x) +C ⇒ !0 Z Z f (x)dx = f (x) k f (x)dx = k f (x)dx, k số D Z f (u)dx = F(u) +C Câu 43 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 44 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số B Cả ba đáp án C F(x) = x2 nguyên hàm hàm số f (x) = 2x √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 45 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A Z B Z C g(x)dx, với f (x), g(x) liên tục R f (x)dx − Z Z [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Trang 4/5 Mã đề Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R Câu 46 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 47 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (I) C Chỉ có (II) Câu 48 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) xác định K B f (x) có giá trị nhỏ K D f (x) liên tục K D Cả hai Câu 49 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B 0dx = C, C số A xα dx = α+1 Z Z dx = ln |x| + C, C số D dx = x + C, C số C x Câu 50 Trong khẳng định sau, khẳng định sai? A Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) B dx = log |u(x)| + C u(x) C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B D D B C D A A 10 C 11 D 12 13 D 14 D 16 D 15 B B 17 D 18 C 19 D 20 C 22 21 A 23 25 C 24 B C 26 A 27 A 28 A 29 A 30 31 D B 32 C C 33 C 34 35 C 36 37 A 39 D 41 A D 40 D 43 C 44 45 C 46 A 47 C 48 50 B 38 42 49 A D B D D B ... số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B D D B C D A A 10 C 11 D 12 13 D 14 D 16 D 15 B B 17 D 18 C 19 D 20 C 22 21 A 23 25 C...Câu 12 [122 20d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A (1; 2) B ;3 C 2; D [3; 4) 2 √ ab Câu 13 [122 12d]... hạn khác 0? n+1 sin n B C D √ A n n n n Câu 26 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ Trang 2/5 Mã đề ! un B Nếu lim un = a , lim = ±∞ lim = C Nếu lim un = +∞