Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim 1 − n2 2n2 + 1 bằng? A 0 B 1 3 C 1 2 D −[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 1 − n2 bằng? 2n2 + 1 C A B 2 Câu Cho f (x) = sin x − cos x − x Khi f (x) A −1 + sin 2x B + sin 2x C − sin 2x x+1 Câu Tính lim x→−∞ 6x − 1 B C A 2n + Câu Tìm giới hạn lim n+1 A B C 2−n Câu Giá trị giới hạn lim n+1 A B −1 C Câu [1] Tính lim D − D −1 + sin x cos x D D D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm Câu Tính lim x→2 A x+2 bằng? x B Câu Dãy !n số sau có giới !n hạn 0? A − B e C D !n C !n D Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→a x→b x→b C lim− f (x) = f (a) lim− f (x) = f (b) D lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b 2x + x→+∞ x + B x→a x→b Câu 10 Tính giới hạn lim A −1 C Câu 11 [12213d] Có giá trị nguyên m để phương trình nhất? A B C D 3|x−1| = 3m − có nghiệm D Câu 12 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Câu 13 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Trang 1/5 Mã đề 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e + B xy = e − C xy0 = −ey − D xy0 = −ey + √ Câu 15 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vơ số B 62 C 63 D 64 √ Câu 16 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 C ;3 D (1; 2) A [3; 4) B 2; 2 q Câu 17 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 2] C m ∈ [0; 1] D m ∈ [−1; 0] log(mx) Câu 18 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m ≤ C m < ∨ m > D m < Câu 14 [3-12217d] Cho hàm số y = ln Câu 19 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m < C m ≤ D m ≥ 4 4 √ √ Câu 20 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 A ≤ m ≤ B m ≥ C ≤ m ≤ D < m ≤ 4 2n − Câu 21 Tính lim 3n + n4 C D A B n−1 Câu 22 Tính lim n +2 A B C D 7n − 2n + Câu 23 Tính lim 3n + 2n2 + A B C D - 3 Câu 24 Dãy số sau có giới hạn khác 0? n+1 sin n 1 A B C D √ n n n n 2 + + ··· + n Mệnh đề sau đúng? n2 + A lim un = B Dãy số un giới hạn n → +∞ C lim un = D lim un = Câu 26 Trong khẳng định có khẳng định đúng? Câu 25 [3-1132d] Cho dãy số (un ) với un = (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Trang 2/5 Mã đề Câu 27 Tính lim A n+3 B Câu 28 Phát biểu sau sai? A lim un = c (Với un = c số) C lim √ = n C D B lim qn = với |q| > 1 D lim k = với k > n ! 3n + 2 Câu 29 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D ! 1 Câu 30 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C +∞ D 2 Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab B √ C √ D √ A 2 a +b a2 + b2 a2 + b2 a2 + b2 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ C √ D √ A 2 a +b a2 + b2 a2 + b2 a2 + b2 Câu 33 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B C D a 3 [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A B a 57 C D 19 19 17 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B C a D A [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S √ BC) √ 2a 57 a 57 a 57 A B C D a 57 19 17 19 0 0 Câu 37.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D d = 30◦ , biết S BC tam giác Câu 38 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 26 16 Trang 3/5 Mã đề Câu 39 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 5a a 2a B C D A 9 9 Câu 40 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B 2a C a D a Câu 41 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z f (x)dx = f (x) D Câu 42 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B F(x) = G(x) khoảng (a; b) C Cả ba câu sai D G(x) = F(x) − C khoảng (a; b), với C số Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Cả hai câu C Chỉ có (I) Câu 44 Z Các khẳng định sau Z sai? f (x)dx = F(x) + C ⇒ A Z C f (x)dx = F(x) +C ⇒ f (t)dt = F(t) + C B Z f (u)dx = F(u) +C D Z Z D Cả hai câu sai !0 f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Câu 45 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (III) sai C Câu (II) sai D Câu (I) sai sai Câu 46 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Trang 4/5 Mã đề Câu 47 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 48 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 49 Z Trong khẳng định sau, khẳng định sai? Z Z C dx = ln |x| + C, C số Z x xα+1 D xα dx = + C, C số α+1 0dx = C, C số A B dx = x + C, C số Câu 50 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) liên tục K B f (x) xác định K D f (x) có giá trị lớn K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A D B C B C B 10 11 B 12 D 13 15 14 B B D B C 16 17 D 18 A 19 C 20 A 21 C 22 A 23 D 24 A 25 D 26 B 28 B 27 B 29 D 30 31 D 32 C 34 C 36 C 33 B 35 A D 37 B 38 39 B 40 D 42 D 41 43 C B 44 45 A 47 49 C D C 46 D 48 D 50 B C ... lớn K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A D B C B C B 10 11 B 12 D 13 15 14 B B D B C 16 17 D 18 A 19 C 20 A 21 C 22 A 23 D... đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 26 16 Trang 3/5 Mã đề Câu 39 [3] Cho khối chóp S ABC... > D m < Câu 14 [3 -122 17d] Cho hàm số y = ln Câu 19 [122 4d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m < C m ≤ D m ≥ 4 4 √ √ Câu 20 [122 15d] Tìm m để