Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim 2n + 1 3n + 2 A 0 B 2 3 C 3 2 D 1 2[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2n + 3n + 2 A B √ √ 4n2 + − n + Câu Tính lim 2n − A B Câu Tính giới hạn lim Câu Tính giới hạn lim x→2 A −1 x2 − 5x + x−2 B D C +∞ D C D C +∞ D C Câu Giá trị lim (3x2 − 2x + 1) x→1 A B Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin 2x B −1 + sin x cos x C + sin 2x x −9 Câu Tính lim x→3 x − A B +∞ C −3 √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B C D − sin 2x D D − Câu Giá trị lim(2x2 − 3x + 1) x→1 A B x+1 Câu Tính lim x→−∞ 6x − A B C +∞ C D 1 D Câu 10 Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim− f (x) = f (b) B lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b D lim− f (x) = f (a) lim− f (x) = f (b) Câu 11 [12213d] Có giá trị nguyên m để phương trình nhất? A B C 3|x−1| = 3m − có nghiệm D √ Câu 12 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B Vơ số C 62 D 63 Câu 13 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m > C m ≥ D m ≤ 4 4 Trang 1/5 Mã đề Câu 14 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m ≤ D m > Câu 15 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 18 11 − 29 11 + 19 C Pmin = D Pmin = 21 Câu 16 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 − A Pmin = √ 11 − 19 B Pmin = Câu 17 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e + B xy = e − C xy0 = −ey − D xy0 = −ey + √ √ − 3m + = có nghiệm C ≤ m ≤ D < m ≤ 4 Câu 19 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ log 2x Câu 20 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x − ln 2x B y0 = D y0 = A y0 = C y0 = 3 2x ln 10 x 2x ln 10 x ln 10 Câu 18 [12215d] Tìm m để phương trình x+ B m ≥ A ≤ m ≤ 1−x2 Câu 21 Phát biểu sau sai? A lim √ = n C lim k = với k > n − 4.2 x+ 1−x2 B lim qn = với |q| > D lim un = c (Với un = c số) Câu 22 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ Câu 23 Dãy số sau có giới hạn khác 0? n+1 A √ B n n C C sin n n un D +∞ D n 12 + 22 + · · · + n2 n3 A B C +∞ D 3 ! 1 Câu 25 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D + + ··· + n Câu 26 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = 1 C lim un = D lim un = Câu 24 [3-1133d] Tính lim Trang 2/5 Mã đề Câu 27 Trong mệnh đề đây, mệnh đề ! sai? un = +∞ A Nếu lim un = a > lim = lim ! un B Nếu lim un = a < lim = > với n lim = −∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un D Nếu lim un = a , lim = ±∞ lim = Câu 28 Tính lim 2n2 − 3n6 + n4 A Câu 29 Tính lim n+3 A C B C B D D ! 3n + 2 Câu 30 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D d = 30◦ , biết S BC tam giác Câu 31 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 13 26 Câu 32 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ a a A B C a D 2a d = 120◦ Câu 33 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 4a C 2a D Câu 34 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D 2 0 0 Câu 35.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 36 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B a C D 2a Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 a b2 + c2 c a2 + b2 abc b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Trang 3/5 Mã đề Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a D A B C a [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a Khoảng cách từ O đến (S√BC) √ 2a 57 a 57 a 57 B a 57 C D A 17 19 19 √ Câu 40 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a 58 3a a 38 A B C D 29 29 29 29 Câu 41 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (I) sai C Câu (III) sai D Câu (II) sai sai Câu 42 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (I) C Cả hai câu D Chỉ có (II) Câu 43 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C xα dx = xα+1 + C, C số α+1 dx = ln |x| + C, C số Z x D dx = x + C, C số B Câu 44 Trong khẳng định sau, khẳng định sai? A Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) B dx = log |u(x)| + C u(x) C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 45 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) khoảng (a; b) Trang 4/5 Mã đề Câu 46 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 47 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) liên tục K B f (x) xác định K D f (x) có giá trị nhỏ K Câu 48 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 49 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề D (I) (III) Câu 50 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z B f (x)dx = f (x) f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B A A A D A D 10 A 11 B D C 14 A 15 B 16 A 17 B 18 A 19 B 20 21 B 22 23 B 24 25 D D C D 26 27 A C 28 A 29 D B 33 D 35 37 D 12 13 31 B B 32 B 34 A 36 A C B 39 30 D 41 A 38 B 40 B 42 C 43 C 44 45 C 46 D 47 C 48 D 50 D 49 B B ... Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B A A A D A D 10 A 11 B D C 14 A 15 B 16 A 17 B 18 A 19 B 20 21 B 22 23 B 24 25 D D C D 26 27 A C 28 A 29 D B 33 D 35 37 D 12 13 31 B B... +∞ B lim un = 1 C lim un = D lim un = Câu 24 [3-1133d] Tính lim Trang 2/5 Mã đề Câu 27 Trong mệnh đề đây, mệnh đề ! sai? un = +∞ A Nếu lim un = a > lim = lim ! un B Nếu lim un = a < lim = >... G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề D (I) (III)