1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt môn toán 12 (98)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 116,49 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim 1 − 2n 3n + 1 bằng? A − 2 3 B 1 3 C 1 D 2[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 1 − 2n bằng? Câu [1] Tính lim 3n + A − B 3 x+1 Câu Tính lim x→−∞ 6x − 1 A B √ √ 4n2 + − n + Câu Tính lim 2n − A B C C D 2 D Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim = B lim [ f (x) − g(x)] = a − b x→+∞ g(x) x→+∞ b C lim [ f (x) + g(x)] = a + b D lim [ f (x)g(x)] = ab x→+∞ C +∞ D x→+∞ Câu Giá trị lim(2x − 3x + 1) x→1 A B C +∞ D Câu Phát biểu sau sai? A lim un = c (un = c số) C lim k = n x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A −1 B x−3 Câu [1] Tính lim bằng? x→3 x + A B 1 = n D lim qn = (|q| > 1) B lim C D C +∞ D −∞ Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin 2x B −1 + sin x cos x C + sin 2x x−2 Câu 10 Tính lim x→+∞ x + A − B −3 C Câu 11 [12213d] Có giá trị nguyên m để phương trình nhất? A B D − sin 2x D 3|x−1| C Câu 12 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C = 3m − có nghiệm D D Vơ nghiệm Câu 13 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≤ C m < D m ≥ 4 4 Trang 1/5 Mã đề 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = e − C xy0 = −ey + D xy0 = −ey − Câu 14 [3-12217d] Cho hàm số y = ln A xy0 = ey + 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 18 11 − 29 11 − C Pmin = D Pmin = 21 Câu 15 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 + 19 A Pmin = B Pmin √ 11 − 19 = Câu 16 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 13 C 2020 D log2 2020 q Câu 17 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 1] C m ∈ [0; 4] D m ∈ [0; 2] log(mx) = có nghiệm thực log(x + 1) C m ≤ D m < ∨ m = Câu 18 [1226d] Tìm tham số thực m để phương trình A m < ∨ m > B m < Câu 19 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 20 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 4) C (2; 4; 3) D (1; 3; 2) Câu 21 Tính lim A n−1 n2 + B 7n2 − 2n3 + Câu 22 Tính lim 3n + 2n2 + A - B C D D C ! 1 Câu 23 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n C D A +∞ B 2 ! 1 Câu 24 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D + + ··· + n Câu 25 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = 12 + 22 + · · · + n2 Câu 26 [3-1133d] Tính lim n3 A B +∞ C D Trang 2/5 Mã đề Câu 27 Dãy số sau có giới hạn 0? n2 + n + 1 − 2n B u = A un = n 5n + n2 (n + 1)2 C un = n2 − 3n n2 2n2 − Câu 28 Tính lim 3n + n4 B C A Câu 29 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un D un = n2 − 5n − 3n2 D ! un = a < lim = > với n lim = −∞ = +∞ lim = a > lim(un ) = +∞ ! un = a > lim = lim = +∞ ! un = a , lim = ±∞ lim = Câu 30 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a Khoảng cách từ O đến (S√BC) √ 2a 57 a 57 a 57 B a 57 C D A 19 19 17 0 0 Câu 32.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 b a2 + c2 abc b2 + c2 a b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 √ Câu 34 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 3a 38 3a a 38 A B C D 29 29 29 29 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 A a 57 B C D 17 19 19 Câu 36 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A 2a B C D a Trang 3/5 Mã đề Câu 37 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D 2 Câu 38 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 2a 8a 5a B C D A 9 9 Câu 39 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B C a D 2a Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B a D A C Câu 41 Z Các khẳng định sau Z sai? A Z C f (x)dx = F(x) + C ⇒ !0 f (x)dx = f (x) f (t)dt = F(t) + C B Z Z D k f (x)dx = k Z f (x)dx, k số Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Câu 42 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (III) C (II) (III) D (I) (II) Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Cả hai câu C Chỉ có (II) D Chỉ có (I) Câu 44 Trong khẳng định sau, khẳng định sai? A Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) B dx = log |u(x)| + C u(x) C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Trang 4/5 Mã đề Câu 45 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C B Z dx = x + C, C số D xα dx = xα+1 + C, C số α+1 dx = ln |x| + C, C số x Câu 46 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 47 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 48 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B F(x) = x2 nguyên hàm hàm số f (x) = 2x √ C F(x) = x nguyên hàm hàm số f (x) = x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 49 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Cả hai C Chỉ có (II) D Chỉ có (I) Câu 50 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B A B A 10 11 D B 15 D C 12 B 14 B 16 B D 18 17 A 19 D A A 13 B B 20 A 21 A 22 A 23 C 24 25 C 26 C 28 C 27 A 29 C 30 31 A D B 32 A 33 D 34 A 35 D 36 37 C 38 39 C 40 41 D C D C 42 D 43 B 44 B 45 B 46 B 47 A 49 C 48 C 50 C ... (x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B A B A 10 11 D B 15 D C 12 B 14 B 16 B D 18 17 A 19 D A A 13 B B 20 A 21 A 22 A 23 C... ) với un = Mệnh đề sau đúng? n2 + A lim un = B Dãy số un giới hạn n → +∞ C lim un = D lim un = 12 + 22 + · · · + n2 Câu 26 [3-1133d] Tính lim n3 A B +∞ C D Trang 2/5 Mã đề Câu 27 Dãy số sau... hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (III) C (II) (III)

Ngày đăng: 10/03/2023, 23:30