1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt môn toán 12 (35)

6 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 113,34 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→2 x2 − 5x + 6 x − 2 A 0 B −1 C 1 D[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A B −1 C 2n + Câu Tính giới hạn lim 3n + A B C 2 x3 − Câu Tính lim x→1 x − A B C +∞ x−3 Câu [1] Tính lim bằng? x→3 x + A B C +∞ x+2 Câu Tính lim bằng? x→2 x A B C 2−n Câu Giá trị giới hạn lim n+1 A B C 2n + Câu Tìm giới hạn lim n+1 A B C √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 B C A Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D D D −∞ D −∞ D D −1 D D − x2 − 12x + 35 Câu 10 Tính lim x→5 25 − 5x 2 A − B +∞ C −∞ D 5 Câu 11 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D √ Câu 12 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B Vô số C 62 D 64 − xy Câu 13 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 18 11 − 29 11 − 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 Trang 1/5 Mã đề Câu 14 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 Câu 15 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B 2020 C log2 2020 D log2 13 A ≤ m ≤ B < m ≤ 1 = m − có nghiệm 3|x−2| C < m ≤ D ≤ m ≤ Câu 16 [12214d] Với giá trị m phương trình log 2x Câu 17 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x − ln 2x A y0 = B y0 = C y0 = D y0 = 3 2x ln 10 2x ln 10 x x ln 10 log(mx) = có nghiệm thực Câu 18 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < B m < ∨ m > C m < ∨ m = D m ≤ Câu 19 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e − B xy = −e + C xy0 = −ey − D xy0 = ey + Câu 20 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Câu 21 Phát biểu sau sai? A lim √ = n C lim qn = với |q| > B lim un = c (Với un = c số) D lim = với k > nk ! 1 + + ··· + 1+2 + + ··· + n B C 2 Câu 22 [3-1131d] Tính lim A +∞ Câu 23 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B ! 1 Câu 24 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B Câu 25 Dãy số sau có giới hạn 0? n2 − 3n n2 − A un = B u = n n2 5n − 3n2 C +∞ D un D C C un = D n2 + n + (n + 1)2 D un = − 2n 5n + n2 Câu 26 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Trang 2/5 Mã đề n−1 Câu 27 Tính lim n +2 A B 12 + 22 + · · · + n2 Câu 28 [3-1133d] Tính lim n3 A B 7n2 − 2n3 + Câu 29 Tính lim 3n + 2n2 + A - B Câu 30 Dãy số sau có giới hạn khác 0? n+1 sin n A B n n C D C +∞ D C D C n D √ n Câu 31 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B a C 2a D 3a , hình chiếu vng Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 0 0 Câu 33.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a B C D A 2 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab A B C D √ √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a B C D a A a [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ O đến (S √ BC) √ √ 2a 57 a 57 a 57 A a 57 B C D 19 17 19 Câu 37 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 38 [2] Cho hai mặt phẳng (P) (Q) vuông góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A 2a B C a D Trang 3/5 Mã đề [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 B A a 57 C D 19 17 19 d = 30◦ , biết S BC tam giác Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 Câu 41 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) khoảng (a; b) Câu 42 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (II) C Chỉ có (I) D Cả hai câu Câu 43 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (III) C (I) (II) D (II) (III) Câu 44 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C 0dx = C, C số dx = ln |x| + C, C số Z x xα+1 D xα dx = + C, C số α+1 B Câu 45 đề sau sai? Z [1233d-2] Mệnh Z k f (x)dx = k A f (x)dx, với k ∈ R, f (x) liên tục R Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Câu 46 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) liên tục K B f (x) có giá trị lớn K D f (x) có giá trị nhỏ K Trang 4/5 Mã đề Câu 47 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z B f (x)dx = f (x) Z C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 48 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ B F(x) = x nguyên hàm hàm số f (x) = x C Cả ba đáp án D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 49 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 50 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B B C D B D 11 B D D 10 D 12 C 13 D C 14 A 15 D 16 C 17 D 18 C 19 A 20 C 21 D 24 25 D 26 A 29 A 30 A 31 A 32 D 35 37 C B 39 D 28 A C 33 C 22 23 27 B D B 34 D 36 D 38 D 40 C 41 C 42 D 43 C 44 D 45 A 46 47 A 48 49 A 50 C B D ... C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B B C D B D 11 B D D 10 D 12 C 13 D C 14 A 15 D 16 C 17 D 18 C 19 A 20 C 21 D 24 25 D 26... hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (III) C (I) (II)... 10 x x ln 10 log(mx) = có nghiệm thực Câu 18 [122 6d] Tìm tham số thực m để phương trình log(x + 1) A m < B m < ∨ m > C m < ∨ m = D m ≤ Câu 19 [3 -122 17d] Cho hàm số y = ln Trong khẳng định sau

Ngày đăng: 10/03/2023, 23:28