Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→−∞ x + 1 6x − 2 bằng A 1 3 B 1 6 C 1 D 1 2[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x+1 Câu Tính lim x→−∞ 6x − 1 A B 2−n Câu Giá trị giới hạn lim n+1 A −1 B C D C D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm Câu !Dãy số sau có giới !n hạn 0? n B A 3 x−2 Câu Tính lim x→+∞ x + A B − 2n + Câu Tính giới hạn lim 3n + B A 2 x − 12x + 35 Câu Tính lim x→5 25 − 5x 2 B − A 5 x−3 Câu [1] Tính lim bằng? x→3 x + A +∞ B !n C − !n D e C D −3 C D C −∞ D +∞ C D −∞ Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x)g(x)] = ab B lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ f (x) a C lim = D lim [ f (x) + g(x)] = a + b x→+∞ g(x) x→+∞ b 2n − Câu 10 Tính lim 2n + 3n + A B +∞ C −∞ D Câu 11 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Câu 12 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m ≤ C m > D m ≥ 4 4 x−3 x−2 x−3 x−2 Câu 13 [12212d] Số nghiệm phương trình − 2.2 − 3.3 + = A Vô nghiệm B C D Trang 1/5 Mã đề Câu 14 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 √ i h q x+ log23 x + 1+4m−1 = có nghiệm thuộc đoạn 1; A m ∈ [−1; 0] B m ∈ [0; 4] C m ∈ [0; 2] D m ∈ [0; 1] √ Câu 15 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C Vô số D 63 √ Câu 16 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A [3; 4) B 2; C ;3 D (1; 2) 2 − xy Câu 17 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ √ √ √ y 11 − 11 − 19 11 + 19 18 11 − 29 B Pmin = C Pmin = D Pmin = A Pmin = 21 9 Câu 18 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e − B xy = e − C xy0 = −ey + D xy0 = ey + 1 Câu 19 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 20 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 13 C log2 13 D 2020 Câu 21 Trong mệnh đề đây, mệnh đề nào!sai? un = A Nếu lim un = a , lim = ±∞ lim !vn un B Nếu lim un = a > lim = lim = +∞ ! un = −∞ C Nếu lim un = a < lim = > với n lim D Nếu lim un = +∞ lim = a > lim(un ) = +∞ Câu 22 Dãy số sau có giới hạn 0? n2 − 3n n2 + n + A un = B u = n n2 (n + 1)2 C un = n2 − 5n − 3n2 Câu 23 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B −∞ C n−1 Câu 24 Tính lim n +2 A B C ! 1 Câu 25 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C Câu 26 Phát biểu sau sai? A lim un = c (Với un = c số) B lim √ = n D un = − 2n 5n + n2 un D D D Trang 2/5 Mã đề 1 = với k > D lim qn = với |q| > k n Câu 27 Trong khẳng định có khẳng định đúng? C lim (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 28 Tính lim A B cos n + sin n n2 + B −∞ C D D +∞ ! 3n + 2 Câu 29 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 30 Tính lim n+3 A B C D C Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a C A B a D a 2 d = 30◦ , biết S BC tam giác Câu 32 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 13 26 [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ √ Khoảng cách từ A đến (S√BC) √ a 57 2a 57 a 57 A a 57 C D B 17 19 19 [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 19 17 d = 120◦ Câu 35 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 4a C 3a D Câu 36 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 2a 8a 5a A B C D 9 9 0 0 Câu 37.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 Trang 3/5 Mã đề √ Câu 38 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 a 38 3a 3a 58 A B C D 29 29 29 29 Câu 39 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a B a C D A 2 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 41 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x A xα dx = + C, C số B 0dx = C, C số α+1 Z Z dx = ln |x| + C, C số D dx = x + C, C số C x Câu 42 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R B Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Chỉ có (II) C Cả hai câu D Cả hai câu sai Câu 44 Trong khẳng định sau, khẳng định sai? A Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) B dx = log |u(x)| + C u(x) C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 45 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số C Cả ba đáp án D F(x) = x2 nguyên hàm hàm số f (x) = 2x Trang 4/5 Mã đề Câu 46 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Cả hai C Cả hai sai Câu 47 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị lớn K B f (x) có giá trị nhỏ K D f (x) xác định K D Chỉ có (I) Câu 48 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Câu 49 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B Cả ba mệnh đề C (I) (III) D (I) (II) Câu 50 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z C f (x)dx = f (x) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B C B A C A C 11 12 B 13 B 18 19 B 20 21 B 22 23 C C D D 26 B 29 D 31 A C 28 C 30 C 32 C 34 35 D 36 37 D 38 39 A 40 A 41 A 42 44 C 45 A 46 A 47 A 48 49 B 24 A 27 A 43 C 16 17 33 B 14 A C 15 A 25 D 10 C D 50 A B C D D B B ... F(x) + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B C B A C A C 11 12 B 13 B 18 19 B 20 21 B 22 23 C C D D 26 B 29 D 31 A C 28 C 30... F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B Cả ba mệnh đề C (I) (III) D... nghiệm nhất? A B C D Câu 20 [122 21d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 13 C log2 13 D 2020 Câu 21 Trong mệnh đề đây, mệnh đề nào!sai? un = A Nếu