1. Trang chủ
  2. » Tất cả

Đề ôn thi thhpt môn toán lớp 12 (677)

6 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 114,23 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 6 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→5 x2 − 12x + 35 25 − 5x A − 2 5 B +∞ C 2 5[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tính lim x→5 A − x2 − 12x + 35 25 − 5x B +∞ x+1 Câu Tính lim x→−∞ 6x − A B Câu Dãy !n số sau có giới !n hạn 0? 5 B A − 3 C D −∞ C D !n C !n D e Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b x→a x→b D lim+ f (x) = f (a) lim− f (x) = f (b) Câu Tính lim x→3 x −9 x−3 C +∞ D Câu Dãy số! có giới hạn 0? n −2 B un = n2 − 4n A un = n3 − 3n C un = n+1 !n D un = 2n + Câu Tìm giới hạn lim n+1 A B C D C D +∞ C D A −3 B Câu Giá trị lim (3x2 − 2x + 1) x→1 A B 2n + Câu Tính giới hạn lim 3n + 2 A B x−2 Câu 10 Tính lim x→+∞ x + A B 2 D − q Câu 11 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [0; 1] C m ∈ [0; 4] D m ∈ [−1; 0] Câu 12 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ C −3 Câu 13 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≥ C m < D m ≤ 4 4 Trang 1/6 Mã đề Câu 14 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập đây? " ! 5 A 2; B [3; 4) C (1; 2) D ;3 2 √ ab log(mx) = có nghiệm thực log(x + 1) C m < D m < ∨ m > Câu 15 [1226d] Tìm tham số thực m để phương trình A m ≤ B m < ∨ m = Câu 16 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 17 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B log2 2020 C 2020 D 13 Câu 18 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D 1 Trong khẳng định sau đây, khẳng định đúng? Câu 19 [3-12217d] Cho hàm số y = ln x + A xy0 = ey − B xy0 = −ey + C xy0 = ey + D xy0 = −ey − √ Câu 20 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 64 C 62 D Vô số ! 1 + ··· + Câu 21 [3-1131d] Tính lim + 1+2 + + ··· + n A B C D +∞ 2 Câu 22 Dãy số sau có giới hạn khác 0? sin n n+1 1 C A B √ D n n n n ! 1 Câu 23 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D Câu 24 Dãy số sau có giới hạn 0? − 2n n2 + n + n2 − 3n n2 − A un = B u = C u = D u = n n n 5n + n2 (n + 1)2 n2 5n − 3n2 12 + 22 + · · · + n2 Câu 25 [3-1133d] Tính lim n3 A B n−1 Câu 26 Tính lim n +2 A B C +∞ D C D un Câu 27 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C D −∞ ! 3n + 2 Câu 28 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Trang 2/6 Mã đề 7n2 − 2n3 + 3n3 + 2n2 + C A B Câu 30 Trong khẳng định có khẳng định đúng? Câu 29 Tính lim D - (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab C √ D √ B √ A 2 2 2 a +b a +b a +b a + b2 √ Câu 32 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 3a a 38 3a 38 B C D A 29 29 29 29 Câu 33 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 2a a 5a B C D A 9 9 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a B C a A D a 3 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B a C D Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 b a2 + c2 abc b2 + c2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 37 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ 2a a a A a B C D 2 [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 19 17 0 0 Câu 39.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Trang 3/6 Mã đề d = 120◦ Câu 40 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a C 2a D 3a A 4a B Câu 41 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx B Z D ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z f (x)g(x)dx = f (x)dx g(x)dx Câu 42 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R B Câu 43 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (I) C Chỉ có (II) D Cả hai Câu 44 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z f (x)dx = f (x) D Câu 45 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (III) sai Câu 46 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) xác định K C Khơng có câu D Câu (I) sai sai B f (x) liên tục K D f (x) có giá trị nhỏ K Câu 47 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) Trang 4/6 Mã đề (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Chỉ có (II) C Cả hai câu sai Câu 48 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C B dx = ln |x| + C, C số x Z D xα dx = D Chỉ có (I) xα+1 + C, C số α+1 dx = x + C, C số Câu 49 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số B Cả ba đáp án √ C F(x) = x nguyên hàm hàm số f (x) = x D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 50 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/6 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C D C D B A C C A 10 A 11 D 12 13 D 14 D 16 C 17 A 18 C 19 A 20 C 21 A 22 A 15 B B 23 D 24 A 25 A 27 26 28 B 29 D 31 33 B C B D 30 B 32 B 34 A 35 D 36 37 D 38 B 40 B 39 A 41 D 42 D D 43 C 44 45 C 46 B 48 B 50 B 47 A 49 C C ... (x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/6 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C D C D B A C C A 10 A 11 D 12 13 D 14 D 16 C 17 A 18 C 19 A 20 C 21 A 22 A 15 B B 23 D... D m < ∨ m > Câu 15 [122 6d] Tìm tham số thực m để phương trình A m ≤ B m < ∨ m = Câu 16 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 17 [122 21d] Tính tổng tất... cácZmệnh đề sau, mệnh Z k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx B Z D ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z f (x)g(x)dx = f (x)dx g(x)dx Câu 42 đề sau Z [123 3d-2]

Ngày đăng: 10/03/2023, 23:06

w